
Computer Science (Datavetenskap)
20 credits (20 poäng)

October,

The Algorithms and Implementation of MesoRD

Johan Hattne

Department of Information Technology, Uppsala University

Supervisor (Handledare):
Johan Elf, Department of Cell and Molecular Biology

Scientific reviewer (Ämnesgranskare):
Per Lötstedt, Department of Information Technology, Scientific Computing

Abstract

The next subvolume method, NSM, is a novel procedure for the simulation of
the Markov process corresponding to the reaction–diffusion master equation.
Unlike many other stochastic simulation algorithms, the NSM does not require
spatial homogeneity, and is therefore applicable to a wider range of models.
MesoRD, a portable, open source software implementing the NSM, attempts
to make the method available to a larger audience. The aims are (i) to per-
mit as general input model descriptions as possible, (ii) interacting with the
user through sensible interfaces, while (iii) preventing the two aforementioned
goals from negatively impacting performance. This text describes the design
of MesoRD and its underlying algorithms, and discusses possible directions for
future development.

Contents

1 Introduction 1
1.1 Mission Statement . 1
1.2 The Master Equation . 2
1.3 Gillespie’s Direct Method . 4
1.4 The Next Reaction Method . 8
1.5 Coupled Reaction–Diffusion Processes 11
1.6 The Next Subvolume Method . 15

2 An Overview of MesoRD 19
2.1 Running MesoRD . 19
2.2 The Model . 20
2.3 Class Overview . 23
2.4 Loose Ends . 30
2.5 Threading and User Interaction 31

3 System Geometry 33
3.1 Constructive Solid Geometry . 33
3.2 CSG Trees in MesoRD . 36
3.3 Connectivity . 40
3.4 MesoRD CSG Algorithm . 41
3.5 Bounding Boxes . 42

4 Expression Evaluation 46
4.1 Reaction Rates . 46
4.2 The Abstract Syntax Tree . 47
4.3 Dimension Analysis . 48
4.4 Constant Folding . 49
4.5 Expression Linearisation . 50

5 Conclusion 51
5.1 Related Work . 51
5.2 Future Work . 51
5.3 Acknowledgements . 52

Bibliography 58

ii

A Algebraic Simplification Transformations 59
A.1 Addition Transformations . 60
A.2 Division Transformations . 61
A.3 Multiplication Transformations 62
A.4 Subtraction Transformations . 63

iii

Chapter 1

Introduction

1.1 Mission Statement

This report describes MesoRD, a software tool for stochastic simulation of re-
actions and diffusion in space. MesoRD is an attempt to implement the next
subvolume method [1, 2] efficiently, yet user-friendly. The problem under con-
sideration is that of finding the molecular population levels in some structured
volume, V , at any time, t > t0, given the number of molecules interacting in V
as well as their spatial distribution at t = t0, see Fig. 1.1. No actual calculations
will be presented – the sole concerns are the theory and the implementation of
the algorithm.

Figure 1.1: The volume V is illustrated by the shaded shape. Inside reside
five molecules of three different species. Diffusive movement is indicated by
the dashed arrows. If two or more molecules come sufficiently close during
simulation, they may react. If this is what a system looks like at t = t0, MesoRD
attempts to determine what it could look like at any later time, t > t0.

To put the aim of the work documented here into theoretical context, one
should note that it focuses on one of several fundamentally different views of
spatially distributed, coupled systems of chemical reactions.

Macroscopic Here, one regards chemical systems in terms of continuous con-
centrations of molecular species. The concentrations change in time ac-
cording to differential equations derived from a set of reactions. Histor-
ically, this deterministic approach has been the most commonly adopted
view, probably because of its mathematical simplicity.

1

Mesoscopic An increase in level of theory can be brought about by keeping
track of every single molecule of interest, changing the composition of the
system by means of stochastic processes. These processes are derived from
the reactions occurring in the system, just like the differential equations
in the deterministic approximation.

Microscopic This very detailed view applies the laws of physics to the system’s
molecular or atomic constituents. Using quantum theory on electrons, or
Newtonian mechanics on individual atoms, yields methods that, while
highly accurate, are computationally feasible only for small systems [3].
The systems of interest here are too big to be manageable by microscopic
methods.

The approaches approximate each other in order of increasing level of theory; the
first, deterministic, approach can be viewed as an approximation of the second
[4]. However, the second, stochastic, view cannot be treated as an approximation
of the first. Deterministic and stochastic approaches are further reviewed and
contrasted by Lok and Brent [5].

As may now be apparent, a balance between level of detail and system size
needs to be established. Big systems, rich in detail, would lead to an explosion
in complexity, which cannot currently be coped with.

The stochastic procedure is more broadly applicable and is, in many respects,
more natural [6]. It has appealing advantages for certain systems, such as
small biological cells. In these systems, molecular diffusion can be slow and
the number of molecules of a certain species is often very small. Additionally,
the rates of chemical reactions typically depend non-linearly on local species
composition; tiny fluctuations in the configuration can have tremendous effects
on the overall state. Fluctuations here, even though irreproducible, are neither
undesirable artifacts nor necessarily due to imperfections in the observational
technique, but inherent properties of any real chemical system, and contribute
to the system’s characteristics [7, 8, 9].

This chapter briefly presents the algorithms behind the next subvolume
method. Their implementations and a number of other techniques used in
MesoRD to enable stochastic simulation in practise are discussed in the remaining
chapters. MesoRD represents an ongoing effort – it is not yet ready for produc-
tion use. Even though the algorithmic base may not change significantly as
work progresses, there is ample space for improvement, particularly in the areas
of efficiency and user-friendliness.

1.2 The Master Equation

The purpose of MesoRD is the simulation of a set of M reaction events, {Rµ}M−1
µ=0 ,

involving a set of S diffusing species, {Si}S−1
i=0 , in a well-defined volume, V . Such

a reaction may be written

Si

k1
−−−−→Sj , (1.1)

which means that every time unit, a number of molecules of species Si are
transformed to molecules of species Sj . The number, or equivalently, the rate
at which the reaction proceeds, is expected to be proportional to k1. One cannot

2

hope to know this number exactly, because it depends on many factors, several
of which may be unknown. Therefore, the introduction of probabilities should
come as no surprise. Now k1 is reinterpreted as the compound probability of
occurrence of a transformation event, which will turn one molecule of Si into a
molecule of Sj .

For reactions involving more than one reactant species, one would suspect
that the reactants need to be spatially close in order to react. For example, the
rate of the reaction

Si + Sj

k2
−−−−→Sk (1.2)

is expected to be proportional to k2. If the concentrations of Si, Sj and Sk in
Eq. 1.2 are denoted by si, sj and sk respectively, one would expect that for
some function f

rate =
dsk

dt
= k2 · f (si, sj) ,

but only as long as the reacting Si and Sj molecules are sufficiently close.
The proximity requirement holds for any number of reactants. However, most
multi-reactant reactions occur in a sequence of elementary steps, where each
step involves only one or two entities [7, 10].

Molecules move relative to each other by means of diffusion. The diffusive
movement of molecules in space can also be described using rates, or probabili-
ties. Reaction and diffusion is illustrated in Fig. 1.2.

Figure 1.2: Reaction and diffusion in space. The square delimits the system,
which is shown at different points on the light blue time axis. Initially, there
are two molecules of different species in the system. At first, the red and the
green molecules are spatially well separated and therefore unable to react. By
diffusive movement, they are brought into proximity. The red and the green
molecules react, and transform into one blue molecule, which diffuses through
the system.

If one knew the location of every molecule at some time t, one would be in
a position to give the state of the system. Denote this time-dependent state
σ = σ (t). Assume that, given an initial state σi, it is possible to calculate the
probability for a transition to a new, final, state, σf , without having to consider
the states that lead up to σi. It can be shown that many chemical systems have
this Markovian property [11]. Denote the probability of being in an arbitrary

3

state σk at time t by P (σk, t), and the probability of transition from σi to σf

in some time interval of length dt by W (σi → σf) dt. The Markovian master
equation can now be defined as

∂P (σf , t)
∂t

=
∫
σi

W (σi → σf) P (σi, t)−
∫
σi

W (σf → σi) P (σf , t) . (1.3)

For all but the very simplest of systems, the Markovian master equation is
multivariate [12]. At steady-state, or thermal equilibrium, the left-hand side of
Eq. 1.3 is zero. This could be ensured by requiring that detailed balance,

W (σi → σf) P (σi, t =∞) = W (σf → σi) P (σf , t =∞) ,

holds at t =∞.
Solving the master equation would give the time evolution of the state prob-

ability function, P (σk, t), that is, the time evolution of the location of every
particle in the system. To solve the master equation, one would need to compute
the transition probability for every transition pair (σi, σf). This is a daunting
task. As shall be seen in section 1.5, the state space of reasonable systems is
far too complicated for Eq. 1.3 to be solved analytically. Thus, MesoRD simu-
lates, and produces trajectories in state space. These trajectories are particular
realisations of the time evolution of the system’s master equation. The master
equation may perhaps be seen as the Schrödinger equation of reaction–diffusion
kinetics: only in the most trivial cases can it be solved exactly1.

In what remains of this text, it will sometimes be necessary to distinguish
concentrations from absolute, integer, numbers of molecules. In such cases, #si

will denote the copy number – the number of Si molecules – while si shall be
interpreted as the corresponding concentration. In general, roman indices are
used for species while Greek symbols are used to index reactions. Lowercase bold
symbols, such as u and v, are reserved for vector quantities, while uppercase
bold symbols, for example M and X, denote matrices. Unless specifically stated
otherwise, logarithms are taken base two2, and indices into arrays, vectors and
matrices start at zero, not one.

1.3 Gillespie’s Direct Method

The theoretical foundation of what follows was established by the ’s; Mc-
Quarrie’s review gives a detailed account of the history of mesoscopic kinetics,
and provides many references its origin [7]. Actual simulation algorithms started
to appear some years later. The precursor of all simulators described here is
a computational procedure developed independently by several groups in the
’s, mainly Bunker et al. [13] and Bortz et al. [14]. The method was
popularised in , when Gillespie reinvented it and demonstrated its capabil-
ities in real applications [4, 9]. Like most mesoscopic simulation efforts since,

1Where, if the analogy is taken a bit further, the reaction and diffusion probabilities take
the place of the wave function in the Schrödinger equation [6].

2We note in passing that there exist but 10 kinds of people: those that think log (x) =
log2 (x) and those that do not. The former are probably also more comfortable with indexing
from zero.

4

the Gillespie method starts by requiring spatial homogeneity. This is a serious
restriction.

Using assumptions similar to those one would deploy in deriving reaction
rates in a hard-sphere molecular model, Gillespie argues that one can express
the probability that any particular combination of molecules will react according
to a particular reaction in a finite time interval, dt [4, 10].

Definition 1.3.1 (Gillespie’s Fundamental Hypothesis). cµdt ≡ average prob-
ability, to first order in dt, that a particular combination of reactant molecules
will react according to reaction Rµ in the next time interval dt.

The probability that a given reaction Rµ will occur depends on the details
of the reaction as well as the instantaneous numbers of reactant molecules in
the reaction volume. This dependence on reactant concentration is captured by
the cµ factor.

The number of molecules also affects the probability in a combinatorial fash-
ion: the more different possibilities of combining the reactant particles there are,
the more probable the reaction is expected to be. For instance, if reaction Rµ

involves two reactant molecules of the same species,

2Si−−→reaction products,

there are hµ = #si

(
#si − 1

)
/2 unique reactant combinations. For a reaction

involving two molecules of different species, Si and Sj , the number would be
hµ = #si

#sj .
Using hµ with Def. 1.3.1, it is possible to express the probability that reac-

tion Rµ occurs in the time interval dt as hµcµdt. The difference is that while
cµdt considers one unique combination of reactant molecules, hµcµdt expresses
the probability for any combination of reactants. If one wishes to track the time
evolution, t > t0, of a multi-reaction system, where the state at t = t0 is known,
all one needs to know are the answers to two questions [9]:

1. When will the next reaction occur?

2. What kind of reaction will it be?

An expression for P (τ, µ) – the probability that reaction Rµ occurs in the time
interval (t + τ, t + τ + dτ), where t denotes the current simulation time – would
answer both questions.

The sought probability can be expressed by first finding P0 (τ), the proba-
bility that no reaction occurs in the interval (t, t + τ). The probability P0 (τ)
in turn, can be calculated by dividing the time interval (t, t + τ) into K subin-
tervals of equal length τ/K. The probability for no reaction in any one of these
K intervals is

PK (τ) = 1−
M−1∑
ν=0

hνcν
τ

K
+O

(τ

K

)
. (1.4)

Equation 1.4 holds for all K > 1. Thus, one can let the time intervals become
infinitesimal by letting K →∞. This will remove the interval dependence from
PK (τ). Applying the standard limit formula [15], and multiplying by hµcµdτ :

P (τ, µ) = hµcµP0 (τ) dτ, (1.5)

5

where

P0 (τ) = lim
K→∞

PK (τ) = exp

(
−

M−1∑
ν=0

hνcντ

)
. (1.6)

Equation 1.5 gives the desired probability. By multiplication by hµcµdτ ,
one has constructed the joint probability for two events. The components of the
joint probability are:

1. No reaction occurs in the interval (t, t + τ). This probability is given by
P0 (τ) as defined by Eq. 1.6.

2. Reaction Rµ occurs during a time interval of length dτ . This probability
is, according to Def. 1.3.1, given by hµcµdτ .

Note that Eq. 1.6 depends on the parameters, {cµ}, for all reactions and the
current copy numbers, through {hµ}, of all reacting species.

Equations 1.5 and 1.6 imply that at time t, the next reaction will occur in
τ time units, and it will be an Rµ reaction. The values of τ and µ are given
by sampling Eq. 1.5, the reaction probability density function. Gillespie showed
that, given two random numbers r1 and r2 in the interval [0, 1], τ and µ may
be drawn from the reaction probability density function by finding τ and µ such
that

τ = 1
M−1P
ν=0

aν

ln
(

1
r1

)
µ−1∑
ν=0

aν < r2

M−1∑
ν=0

aν ≤
µ∑

ν=0
aν

where aµ = hµcµ. (1.7)

The product aµ = hµcµ is the state-dependant rate of reaction Rµ
3. Thus,

in Gillespie’s direct method, the time until the next reaction is sampled from
an exponential distribution with a mean time equal to the inverse of the sum of
all reaction rates. Which this next reaction will be is chosen randomly from a
distribution determined by the reactions’ normalised rates.

Gillespie’s algorithm that implements the theory from this section is shown
in Alg. 1. The state of the system at time t is kept in the vector xt, organised
such that the i:th component is equal to the copy number of species i at time t.
The algorithm needs to be supplied with the rates, {cµ}M−1

µ=0 , from Def. 1.3.1.
The procedure as shown below assumes the presence of a random() function,
that returns a random number in the interval [0, 1]. Random number generation
is the only “black box” in Gillespie’s algorithm.

By carrying out the procedure from t = 0 to t = tstop, one particular realisa-
tion of the stochastic process is simulated. An important observation is that the
method does not make use of fixed time steps. Fixed time steps had previously
been found to be the source of computational inaccuracies and instabilities [16].

Gillespie also described a variation of Alg. 1, called the first-reaction method
[4]. Instead of computing a (µ, τ) pair, the times, {τ}, are computed for every
reaction in the system. The reaction with the smallest τ , the first reaction, will
be the reaction corresponding to the µ as computed by Alg. 1.

3Gillespie originally used the term “reaction intensity” for the quantity aµ, in order to
distinguish it from the macroscopic “reaction rate”, which would be calculated in exactly the
same way. Since both names refer to the same quantity – the number of reaction events per
unit time in a given state – there is little reason to introduce additional complexity by using
different, context-dependant, names.

6

Algorithm 1: Gillespie’s direct method for spatially homogeneous sys-
tems. This algorithm simulates the system in the time interval [0, tstop],
and uses two random numbers per iteration. The reaction parameters,
{cµ}M−1

µ=0 , where M is the number of reactions, are taken from Def. 1.3.1.
It takes time O (M) to update the reaction rates and the state vector, xt.
Finding (τ, µ) is an O (M) operation as well.

begin
for t← 0 to tstop do

for i← 0 to M − 1 do
ai (xt)← The rate of reaction i given the current state xt

µ← λ such that
λ−1∑
ν=0

aν (xt) < random()
M−1∑
ν=0

aν (xt) ≤
λ∑

ν=0
aν (xt)

τ ← 1
M−1P
ν=0

aν(xn)

· ln
(

1
random()

)
Update the state vector xt to account for reaction Rµ

t← t + τ

end

Unless there are absolutely no dependencies between the M reactions in the
system, Gillespie’s first-reaction method wastes random numbers for any system
with M ≥ 3. Curiously, the first-reaction method was initially thought of as
little more than a way to gain insight into the direct method. Yet, the first-
reaction method is important because it is this formulation that enabled many
subsequent improvements.

1.3.1 Macroscopic and Microscopic Reaction Constants

The mathematical relationship between macroscopic rate constants, kµ, such as
those given in Eqs. 1.1 and 1.2, and their corresponding microscopic reaction
constants, cµ, is always rather simple [9],

cµ = kµΩd,

where d is the power of the spatial dimension, and Ω is the reaction volume.
A macroscopic rate constant is volume-independent; its use does not require
explicit reference to the reaction volume. The reason is that macroscopic rate
constants are applied to concentrations – numbers of molecules per volume –
where the size of the reaction volume is effectively “built in”. The probabili-
ties, cµ, are volume-dependent because they are used together with numbers of
molecules which do not carry any information about the reaction volume. With
microscopic reaction constants one has to scale the rate constant according to
the volume in which the reaction is taking place.

The macroscopic, concentration-based, description has its roots in experi-
mentation where it is impossible to deal with single molecules. From a physical
perspective, using cµ is more convenient, because events are described in terms
of a molecular model. Theoretically, cµ rests on firmer ground than kµ [4].

7

1.4 The Next Reaction Method

Gillespie’s method gained popularity and was over time applied to systems of
an originally unanticipated size. In , Gibson and Bruck introduced the
next reaction method, which performs significantly better. In their paper, they
showed their method to be equivalent to Gillespie’s original method [11]. In
hindsight, Gibson and Bruck’s modifications to the first-reaction formulation of
Alg. 1 may seem simple, almost obvious. However, the development did take
more than twenty years.

Gibson and Bruck collected a few general ideas that had been introduced over
the years to improve the initial algorithm. The list below is not complete, but
limited to changes which were eventually incorporated into the next subvolume
method.

• Switch from relative time to absolute time. Algorithm 1 computes τ as
the relative time until the next reaction. The absolute time of a reaction
in Gillespie’s method is t + τ , where t is the time when τ is computed.
This is still very different from fixed time steps.

• Re-use random numbers where legitimate. Gibson and Bruck showed that
it is possible to use certain random numbers more than once. Random
number generation is an expensive operation, further discussed in section
2.4.1. The improved algorithm only uses a single random number per
iteration.

• Only recalculate quantities if necessary. Gibson and Bruck introduced
a static dependency graph to avoid unnecessary recalculation of reaction
rates. This means they were able use the first-reaction formulation without
wasting random numbers. The purpose of the dependency graph is to keep
track of which rates need to be updated after each reaction event. If, for
instance, the system contains 100 reactions, only five of which depend on
a particular species Si, then only the rates of the latter five need to be
updated after executing a reaction which changes nothing but the number
of Si molecules. Because MesoRD currently makes no use of dependency
graphs, they will only be mentioned briefly here4.

• Use appropriate data structures to store quantities that need not be re-
computed every iteration.

The basis of Gillespie’s approach, the reaction probability density function,
given in Eq. 1.5, is kept without modifications.

The improved algorithm typically takes time proportional to the logarithm
of the number of reactions, M , as opposed to the number of reactions itself. As

4Dependency graphs are used in, for instance, compiler design to resolve instruction
scheduling. Usually these graphs are implemented as directed, acyclic graphs where the nodes
are basic block-instructions at some representation level [17]. The dependency graph in a
compiler could implement a Boolean-valued function, conflicts(Ia, Ib), that returns true

if instruction Ia must precede Ib. Denoting the number of instructions in a block by n,
building the graph requires O

`
n2

´
operations, since all pairs of instructions in the block are

compared. In Gibson and Bruck’s method, the dependency graph is similarly constructed in
O

`
M2

´
operations where M is the number of reactions [11]. Gibson and Bruck implement

two reaction-set valued functions, Affects(Rµ) and DependsOn(Rµ), in place of the simpler
conflicts() function.

8

can be seen from Alg. 2 the worst case complexity is still O (M). This, however,
would only occur if all rates need to be recomputed, regardless of what reaction
is executed.

Algorithm 2: The next reaction method by Gibson and Bruck. The
details of the dependency graph are not shown in the algorithm as given
here. Suffice it to state that the update of the dependency graph calls
random() only once, and has a worst case complexity of O (M) in the
number of reactions, M . The remaining symbols are identical to those in
Alg. 1.
begin

Generate the dependency graph
for ν ← 0 to M − 1 do

aν (x0)← The rate of reaction ν given state x0

τν ← 1
aν(x0)

· ln
(

1
random()

)
for t← 0 to tstop do

(t, µ)← (τν , ν) where τν = min0≤λ≤M−1 (τλ)
Update the state vector xt to account for reaction Rµ

Update {τν} according to the dependency graph

end

Gibson and Bruck’s algorithm introduces an implicit requirement for avoid-
ing re-computation of {aµ}: the {cµ} must not change. If it were the case that
the {cµ} were varying over the course of the simulation – for example because
the reaction volume expands or contracts, or the temperature changes – all the
{aµ} would have to be recomputed, irrespective of what reaction was executed.
Thus, what was gained in Alg. 2 compared to Alg. 1 would be lost. In Gillespie’s
original algorithm, time-dependant {cµ} would not have impacted performance,
because the {aµ} are updated in every iteration [4].

1.4.1 The Event Queue

Another key improvement in Gibson and Bruck’s algorithm is not visible in Alg.
2. It concerns the first and last step in the time loop: how to find τµ and µ for
which τµ ≤ τν , 0 ≤ ν ≤M − 1, and consequently updating the dependencies of
Rµ. A naive implementation would store the (τν , ν) in a linear array. Finding
the smallest τν would require a scan of the entire array – an O (M) operation.
Principles from standard sorting algorithms can be put to use in order to reduce
this to O (log (M)).

The idea is to store the (τν , ν) in a heap. The (binary) heap data structure
is an array that can be viewed as a nearly complete (binary) tree [18]. The
tree is completely filled at all levels, except possibly the lowest. For an array of
length n, the corresponding binary tree will have height log (n). The relationship
between the nodes of the tree and the elements in the corresponding array, A,
is simple: the root of the tree is A [0], because in this text indexing starts at
zero. The parent of a node A [i] is A [bi/2c], its left and right children are A [2i]
and A [2i + 1] respectively. The two interpretations of a heap are illustrated in
Fig. 1.3.

9

B

1.3

F

4.2

E

7.3

A

∞

H

5.5

D

2.0

C

3.7

G

8.9

(a) Tree structure of a heap.

B F D E H C G A
1.3 4.2 2.0 7.3 5.5 3.7 8.9 ∞

(b) Array structure of the heap in Fig. 1.3(a).

Figure 1.3: A sample heap represented as a binary tree is shown in Fig. 1.3(a).
The reactions referred to by the nodes are indicated by letters. The times of the
reactions are given by the numbers in the nodes. In an actual implementation,
the letters may correspond to pointers in memory to information concerning
the reactions. The array structure corresponding to the tree is shown in Fig.
1.3(b).

The purpose of the heap in the next reaction method is to keep track of
reactions. Only two operations need to be performed on the heap: finding
the reaction with the earliest time and updating the heap after the time of a
reaction has changed. If the heap satisfies the heap property, or, in this context,
the min-heap property,

A [bi/2c] ≤ A [i] ,

where the inequality is with respect to the time of the reaction in the node, one
can see that the root of the tree will always correspond to the earliest reaction.
The remaining nodes are sorted only with respect to nodes above or below it,
not necessarily with respect to other nodes at the same height.

When viewed as an array, a heap satisfying the heap property is only partially
sorted. Because one will only ever need to find the first element, the partiality
is sufficient. The heap may therefore be interpreted as a queue, in which only
the first element is processed while all others are temporarily ignored5. The
implication of the queue, for which extraction of the first element is an O (1)
operation, is that the next reaction in Gibson and Bruck’s method can be found
in constant time.

5A fully sorted queue would geometrically correspond to a line: every element is ordered
with respect to all elements in front of and behind it. A partially sorted queue would similarly
correspond to a cone, where there need not be any order among the many elements equidistant
from the head of the queue. The queue interpretation of a heap may be confusing to Swedish
readers, as Sweden is probably the only country on earth were all queues are always fully
sorted.

10

All remaining basic operations on heaps run in time at most proportional to
the height of the tree. In particular, updating a node, that is updating a (τµ, µ)
pair, will move the node up or down the tree until the heap again satisfies the
heap property. Thus, updating a node takes time at most proportional to the
height of the tree, O (log (M)). The iterative update implementation used in
MesoRD is given by the resort() function.

Function resort(n) An iterative heap-resorting, or heapify, algorithm
for a single node. A real implementation must also handle boundary cases;
a node cannot be moved off the top or the bottom of the heap. Boundary
checks are omitted in the pseudo-code given here. The time of a node is
queried by calling time(). The maxChild() and minChild() functions
return references to the child nodes with the highest and the lowest times,
respectively. The parent() function returns a reference to the parent.

n: the node to resort
begin

while time(n) > time(maxChild(n)) do
n↔ minChild(n)

while time(n) < time(parent(n)) do
n↔ parent(n)

end

It is not practical to store all the information about a reaction in a tree node,
as these are moved around during the course of the simulation. Therefore, as
mentioned in the caption of Fig. 1.3, each tree node stores a reference to the
appropriate reaction6. Now, space for the reaction-related data needs to be
allocated only once, and their location in memory is not rearranged by the
movement of the references in the tree. Since the references in the tree are
equal size, all nodes require the same amount of memory, and the space needed
for the heap is not affected by node exchanges.

1.5 Coupled Reaction–Diffusion Processes

Both algorithms presented so far assume spatial homogeneity. Spatial homo-
geneity means that a molecule is assumed to have the same probability to in-
teract with any of its potential reaction partners, irrespective of exactly where
these are located within the reaction volume. This implies that each molecule
has a high probability of diffusing through the entire volume before participating
in a reaction.

It has been suggested that not even small bacterial cells demonstrate spatial,
chemical homogeneity. Locally, however, the spatial homogeneity requirement
may be satisfied. Such local homogeneity may arise from frequent, elastic and
non-reactive collisions which tend to randomise the positions of the colliding
molecules.

6There exists a one-to-one mapping between references, whatever their nature, and the
reaction indices used in the text. If reactions are stored in static memory, indices may be
interpreted as offsets from the location of the first – zeroth – reaction.

11

Local, spatial homogeneity can be exploited by dividing the total volume, V ,
into N subvolumes7. The subvolumes form a disjoint partition of V , and may
therefore be uniquely identified by their location in space. Denote a subvolume
located at v =

[
x y z

]T by Ωxyz or Ωv. Thus,

V =
⋃
x

⋃
y

⋃
z

Ωxyz.

The subdivision of V into subvolumes is illustrated in Fig. 1.4.

Figure 1.4: Reactions and diffusions in subvolumes. The big, two-by-two square
delimits the system, which is composed of four subvolumes. The same system
is shown for different points on the light blue time axis. The time between
two successive states need not be equal, although the figure shows the states
equidistant on the time axis. At first, there are two molecules of different
species in the system. Because the red and the green molecules are in different
subvolumes, they cannot react. By diffusive movement they are brought into the
same subvolume. The red and the green molecules react, and are transformed
into one blue molecule, which diffuses through the system. Particles may very
well move by “infinitely detailed Brownian motion” between inter-subvolume
jumps [19]; in the next subvolume method, the location of a molecule is known
to subvolume resolution only.

The subvolumes are assumed to be spatially homogeneous. Potential reac-
tion partners of a given molecule are now defined as all the other molecules
in the same subvolume. Analogously to the two questions in the homogeneous
algorithms, a non-homogeneous simulator needs to answer [12]:

1. When and where will the next event occur?

2. What kind of event will it be?

Bortz et al. had addressed spatial composition in two-dimensional systems
in [20]. Gillespie deemed the approach computationally impractical for
realistic systems, since a diffusion event would correspond to two reactions: one
for destructing the molecule in the source subvolume and another for recreat-
ing it in the destination subvolume [4]. Nevertheless, in Malek-Mansour
and Houard reported successful results for multi-subvolume geometries in one
dimension [21].

Possible implementations in three dimensions were discussed by Hanusse and
Blanché in [12]. In , Stundzia and Lumsden used a Green’s function
to map the bulk diffusion coefficient, D, in Fick’s differential law of diffusion,

7The subvolumes are sometimes called cells by physicists, which can cause confusion among
biologists. They have also been called voxels (volume picture elements, or volume pixels),
which may confuse computer scientists.

12

Eq. 1.9, to corresponding rate probabilities for diffusive events between subvol-
umes [6, 22]. This result enabled the formulation of the fundamental hypothesis
for diffusion processes, Def. 1.5.1, similar in spirit to what was envisioned by
Gillespie [4].

Definition 1.5.1 (Stundzia and Lumsden’s Fundamental Hypothesis for Diffu-
sion Processes). didt ≡ average probability, to first order in dt, that one of #siv

i:th molecules will diffuse out of the subvolume Ωv into an adjacent subvolume
in the next time interval dt.

Analogous to the reasoning that lead up to Eq. 1.5, one may begin the
derivation by expressing the probability that neither reaction nor diffusion will
occur in a subvolume in the time interval (t, t + τ). Considering all subvolumes
in V , this means

P0 (τ) = exp

(
−
∑
v∈V

(
M−1∑
µ=0

hµvcµ +
S−1∑
i=0

#sivdi

)
τ

)
(1.8)

to first order in dτ .
Now the reaction–diffusion probability density function, P (τ, µ, i, v) may

be constructed. Using this function, one can find the probability for a reaction
or a diffusion event occurring in the differential time interval (t + τ, t + τ + dτ).
Reaction and diffusion are the only two events that can change the state of the
system.

• The probability of a reaction event involving Rµ in Ωv is hµvcµP0 (τ) dτ .
Compared to Eq. 1.5, the only difference is the appearance of the location
vector, v, in the combinatorial factor hµv.

• The probability of a diffusion event originating in Ωv is #sivdiP0 (τ) dτ ,
where the diffusing species is Si. Each neighbouring subvolume has the
same probability of being the target of the diffusion event.

These ideas, when put together, lead to Alg. 4, the coupled reaction–diffusion
method. This is a method that does not assume spatial homogeneity. However,
molecules are still treated as dimensionless point particles, which means that
potentially important crowding effects are neglected [23, 24].

The columns of the state matrix Xt are equivalent to the state vectors from
the previous algorithms. There will be one such state column vector for each
subvolume. Thus, if there are S species and N subvolumes in the simulation,
Xt will be a S ×N matrix.

As should now be apparent, the reaction-diffusion master equation has a
much larger state space than its homogeneous counterpart. In the case of cubic
subvolumes with six neighbours each, there are six different diffusion events for
every species, and the number of events that can change the state of the system
is O (N (6S + R)). In realistic systems, N is typically larger than 105.

1.5.1 Macroscopic and Microscopic Diffusion Constants

In a macroscopic treatment, diffusion is modelled by Brownian motion, arising
from a concentration gradient [25]. Diffusion is only weakly dependant on the

13

Algorithm 4: The coupled reaction–diffusion method by Stundzia and
Lumsden. The state matrix, Xt, is updated in every iteration, using the
diffusion parameters, {di}S−1

i=0 , from Def. 1.5.1 and the combinatorial fac-
tors, {hµv}MN−1

µv=0 , from Eq. 1.8. The remaining symbols are identical to
those in Alg. 2. The algorithm as outlined here does not deal with deter-
mining u′, the target subvolume in case of a diffusion event. In practise,
this is not a problem, because the relative probabilities of the different
diffusion targets are known. The algorithm relies on the updateRates()
function.
begin

updateRates()
for t← 0 to tstop do

a←
∑

v∈V

M−1∑
µ=0

hµvcµ

b←
∑

v∈V

S−1∑
i=0

#sivdi

(t, µ, i, u)← (τνjv, ν, j, v) where τνjv = min0≤λ≤M−1
0≤k≤S
w∈V

(τλkw)

if (a + b) · random() ≤ a then
Update the column of the state matrix corresponding to the
subvolume at u to account for reaction Rµ

else
u′ ← the target subvolume of the diffusion event in u
Update the state matrix at columns corresponding to the
subvolumes at u and u′ to account for diffusion of species i

updateRates()

end

state of the system – the motion of one particular species is assumed to be
independent of any other species.

∂si

∂t
= Di∇2si (1.9)

The diffusion constant, D, in Fick’s law above, in general depends on the con-
centration of the diffusing species.

Fick’s law is deceivingly deterministic, because it describes the motion of
infinitely many Brownian particles. Unsurprisingly, it breaks down in the case
of low concentrations. A microscopic derivation of molecular diffusion can be
achieved by using the Langevin equation, which is a statistical formulation of
Newton’s equation of motion. Such a derivation captures the influence of ran-
dom forces on diffusing molecules [25]. The result in one dimension is similar
to Eq. 1.9,

∂Pi

∂t
= di∇2Pi,

where Pi is the distribution of the i:th species, di is defined by the relation

tR =

〈
`2
〉
− 〈`〉2

2di
,

14

Function updateRates(v) The function, as used in Alg. 4, will update
the rate constants for reaction events, y, and diffusion events, z, in the
subvolume centred at v. Symbols are used as defined in Alg. 4.
begin

for µ← 0 to NM − 1 do
yµ ← hµv

for i← 0 to NS − 1 do
zi ← di

#siv

end

and `, in turn, is the distance a molecule will travel in time tR. The randomness
in Brownian motion implies 〈`〉 = 0. In the context of reaction–diffusion simula-
tion, this means that the probability for an Si molecule to diffuse between adja-
cent subvolumes of size `, such that Ω = `d, is proportional to 1/tR = 2di/

〈
`2
〉
.

For the derivation to be valid, the time scale must be long enough to prevent
autocorrelation in the velocities of the diffusing molecules. If the chemistry in
the subvolumes is assumed to be well-defined, the autocorrelation requirement
translates to `� rR, where rR is the reaction radius [26]. Intuitively, this may
be understood as the lower limit on subvolume size in order to prevent reaction
and diffusion from merging into an inseparable process.

On the other hand, subvolumes may not be so big as to let the initial location
of a molecule within a subvolume affect the particle’s reaction probability. This
condition is fulfilled when [27]

`2 � DtR.

In summary, subvolumes should be big enough to permit nonreactive collisions
to homogenise the reaction volume, but small enough for molecules to travel
through a large number of subvolumes during their lifetime [2, 28].

1.6 The Next Subvolume Method

The next subvolume method assembles concepts from the previously encoun-
tered algorithms [2]. Like Stundzia and Lumsden’s method, it does not require
global homogeneity, as the total volume, V , is divided into N subvolumes, each
with volume Ω. The reactions in each subvolume are handled by Gillespie’s
original algorithm. Translating ideas the from Gibson and Bruck now leads to
running time O (log (N)) in the number of subvolumes, N , instead of O (N)8.
The next subvolume method is an exact method; its results are provably equiv-
alent to trajectories of the master equation.

The algorithm now explained is assembled in Alg. 7. In the next subvol-
ume method, the subvolumes, not the reactions, are stored in a heap, A. This
crucial step is what sets the next subvolume method apart from many other
methods [29]. The subvolumes are initialised, meaning that for each subvol-
ume, one computes and stores the sum of the reaction and diffusion rates, as

8The complexity is O (log (N)) only as long as the number of subvolumes is much larger
than the number of reactions, species and neighbours per subvolume. This is normally the
case.

15

well as the time until the next event. These computations are handled by the
updateSubvolume() function. The subvolumes are then sorted with respect to
the previously computed time, using a standard sorting algorithm. The sorting
will make sure that the subvolumes satisfy the heap property: if A [i− 1] ≤ A [i]
one trivially has A [bi/2c] ≤ A [i], where 1 ≤ i ≤ (N − 1).

Function updateSubvolume(i, t) The function will update the rates for
reaction and diffusion events in the i:th subvolume, using a single random
number. The number of neighbours of the i:th subvolume is denoted by
ni, and the size of any subvolume is `. The function will also update the
time of the next event in the subvolume, using the current simulation time,
t. Remaining symbols are used as in Alg. 4.

i: index of the subvolume to update
t: the current simulation time
begin

ρi ←
M−1∑
ν=0

aν (Xt) where aµ (Xt) = hµicµ

δi ←
S−1∑
j=0

ni−1∑
λ=0

djλXij

`2

τi ← 1
ρi+δi

· ln
(

1
random()

)
+ t

end

In the time loop, the next subvolume is found. This is done in constant time,
as the next subvolume is always referred to by A [0]. A random number is used
to find whether the event in the next subvolume will be a reaction or a diffusion
event.

• In the case of a reaction event, the same random number can be reused
to determine which reaction will occur. After executing the reaction, the
subvolume has to be updated: the total reaction and diffusion rates and
the time until the next event are recomputed. This will require a second
random number. The subvolume may need to be reordered in the heap.

• In the case of a diffusion event, the first random number can be reused in
order to determine which species will diffuse, and which of the neighbours
will be the target of the diffusion event. After executing the diffusion, both
source and target subvolumes need to be updated and possibly reordered in
the heap. This will consume two random numbers, one for each subvolume.

Note that one only needs to update rates in subvolumes where the composi-
tion has changed. Making use of this observation has roughly the same effect as
the dependency graph in Gibson and Bruck’s method9. Thus, if the last event
was a reaction event, there will be one subvolume to update, if it was a diffusion
event, there will be two. Reestablishing the heap property is an O (log (N))
operation, and this has to be done for each modified subvolume.

While updating ρi and δi, it would be possible to determine not only when
the next event will occur, but also what kind of event it will be. The advantage of

9Some implementation details regarding dependency graphs for this particular purpose are
discussed by Andér [30].

16

such an approach is that all calculations on a subvolume are handled in a single
pass. Such an arrangement would facilitate parallel implementation, but comes
at the price of unnecessary computation. Since the composition of a subvolume
may change again before the next event occurs in the subvolume, any of these
calculations on the subvolume would be invalidated. Because diffusion events
are typically much more frequent than reaction events, it is not unlikely that the
state of a subvolume will change before the next event occurs in it. The same
type of problem occurred in the first-reaction method. There, it was solved by
introducing a dependency graph.

The reaction-dependency graph from Gibson and Bruck’s method is cur-
rently not implemented in the next subvolume method. This decision was moti-
vated by memory considerations. If one wants to avoid recalculation of reaction
rates, one must obviously store those rates that need not be recalculated. Since
the {aµ} are unique for every subvolume, this would require the storage of
N ·M additional floating point values. For big systems, N and M are large,
and memory consumption could become a prohibiting factor. It may however
be interesting to implement a dependency graph in a later version of MesoRD,
preferably as a compile-time or modular option.

17

Algorithm 7: Elf’s next subvolume method. The algorithm uses two
random numbers per iteration in the case of reaction events and three
random numbers per iteration for diffusion events. The difference between
{dj} as discussed in the text, and the {djk} used in the algorithm, is that
the latter respect boundary conditions. For instance, if the subvolume
under consideration does not have a neighbour in the k:th direction, one
would have djk = 0, irrespective of the diffusing species index j. The
number of neighbours of the i:th subvolume is denoted by ni, and the size
of any subvolume is `. The remaining symbols are identical to those in Alg.
4. The algorithm as given here relies on the updateSubvolume() function.

begin
for i = 0 to N − 1 do

updateSubvolume(i)

Sort all the subvolumes in order of increasing τi

while t < tstop do
(t, i)← (τj , j) where τj = min0≤k≤N−1 (τk)
R← random()
if R < ρi

ρi+δi
then

R← R · ρi+δi

ρi

µ← λ such that
λ−1∑
ν=0

aν (Xt) < R
M−1∑
ν=0

aν (Xt) ≤
λ∑

ν=0
aν (Xt)

Update the state matrix Xt to account for reaction Rµ

updateSubvolume(i)
resort(i)

else
R← (R− ρi) ρi+δi

δi

(j, k)← (l, m) such that
p=l−1, q=m−1∑

p=q=0
fpq < R

p=S−1, q=ni−1∑
p=q=0

fpq ≤
p=l, q=m∑

p=q=0
fpq

where fpq = dpqXpi

`2

Update the state matrix Xt to account for diffusion of species
k from subvolume i to subvolume j
for k ∈ {i, j} do

updateSubvolume(k)
resort(k)

end

18

Chapter 2

An Overview of MesoRD

2.1 Running MesoRD

A simulation with MesoRD progresses through two distinct phases.

• In the first phase, the model definition is read from an existing file. Models
are defined using the Systems Biology Markup Language, SBML [31], an
extended markup language discussed further in section 2.2. MesoRD will
build an internal representation from the information in the file. The inter-
nal representation in terms of the MesoRD implementation is summarised
in section 2.3.

• In the second phase, the system is simulated. This means that Alg. 7 is
applied to the data gathered in the previous step. During simulation, the
need to interact with the user may arise. The threading that enables such
interaction to occur in parallel with simulation is discussed in section 2.5.

The first phase is, in general, neither difficult nor computationally demand-
ing. However, due to the expressiveness of SBML, several thousand lines of
code are devoted to the construction of the internal representation. The perfor-
mance of the first phase is almost exclusively dependent on the complexity of
the system’s geometry. Geometry generation is the subject of chapter 3; large
or complex geometries may take considerable time to build.

The second phase does the actual simulation work. Only a small fraction of
the code is concerned with this phase of the program – yet, as it is an iterative
procedure, it can, depending on user settings, consume an almost arbitrary
amount of time. The small size and low complexity of the simulator code means
that it is relatively easy to maintain. Improvements and optimisations in the
simulation engine can have a tremendous impact on overall performance.

2.1.1 Errors and Warnings

The only errors of concern to end users are those that can be addressed without
modifying the MesoRD source code. Because the user’s only responsibility is
to supply MesoRD with a model definition and suitable simulation parameters,
any errors arising from user mistakes can be detected and reported during the
model building phase. Simulation performance need not – in fact, should not –

19

be burdened by input validation or error checking. Once the internal model is
correctly built and simulation starts, any subsequent errors will be due to bugs,
which, in a perfect world, the end user should not need to worry about.

Errors in the SBML model definition are reported by the libsbml library
[32]. MesoRD itself does no error reporting whatsoever, and modelling mistakes
not detected by libsbml cause the program to crash silently. Because MesoRD
introduces several extensions to SBML, which libsbml knows nothing about
and, hence, cannot check for correctness, this is a significant shortcoming. The
lack of error reporting makes usage of MesoRD prohibitively difficult for non-
developers.

Coping with errors will probably be implemented as a globally accessible list
of messages. Whenever an error is encountered, a message is appended to the
list. The list is checked and reported after model building but before invoking
the simulation algorithm. This is similar to the strategy implemented by proper
compilers, which report as many errors as they can before terminating.

2.2 The Model

Details of model building using SBML are discussed elsewhere [33]. SBML is
not meant to be authored manually; its primary purpose is to serve as a stan-
dard for representation, storage and exchange of biochemical models. Editing
is supposed to be done through model building software. Because modifications
and extensions to the original language have been necessary in order to define
models suitable for simulation in MesoRD, there are no third-party programs
that can build MesoRD models out of the box.

The syntax of MesoRD’s SBML dialect is discussed in the User’s Guide in-
cluded in the software distribution [34]. The internal mechanism by which
extensions are dealt with is reviewed in section 2.2.2. Note also that current
versions of MesoRD do not implement all features provided by SBML.

2.2.1 The Systems Biology Markup Language

In brief, an SBML file is structured as shown in Fig. 2.1. The stacked listOfX
elements contain one or more stacked definitions of X. Any of these definition
lists can be empty, in which case the corresponding listOfX construct need not
appear at all. The order of listOfX constructs is not important.

In MesoRD, the opening and closing listOfX tags mark the boundaries of
separate namespaces. There could, for instance, be both a unit and a parameter
named foo. The accessible namespaces at any point are context-dependent:
the definition of a species may refer to a compartment, but the definition of
a unit can never refer to anything but other units. Thus, the compartment
namespace is visible from the species namespace but is inaccessible from the unit
namespace. Some definitions can be nested: for example, a reaction can define
its own set of parameters, which may shadow any globally defined parameters.
The scope of locally defined parameters only extends to the particular reaction.

MesoRD’s scoping and namespacing has a few implications on model building.
Because a reaction definition may refer to parameters as well as species, the
parameter namespace as well as the species namespace must be accessible from
the reaction definition. Under these circumstances, it is not safe to use the same

20

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2"

level="2" version="1">
<model id="My_Model">

<listOfEvents>
...

</listOfEvents>
<listOfFunctions>

...
</listOfFunctions>
<listOfUnitDefinitions>

...
</listOfUnitDefinitions>
<listOfCompartments>

...
</listOfCompartments>
<listOfSpecies>

...
</listOfSpecies>
<listOfParameters>

...
</listOfParameters>
<listOfRules>

...
</listOfRules>
<listOfReactions>

...
</listOfReactions>

</model>
</sbml>

Figure 2.1: A skeleton SBML file [33]. SBML is an extended markup language,
XML, which means that it is hierarchical in structure and easily readable by
machines as well as humans. In principle, an SBML file contains a stacked list of
stacked definitions. Note that events, functions and rules are not yet supported
in MesoRD.

21

identifier in different namespaces1. In fact, some of these uses are not even
valid SBML. Exploiting MesoRD’s peculiar scoping and namespacing feature is
discouraged, even in cases where the outcome is well defined.

The dependencies among the different components of an SBML model dic-
tate a certain order in the building of the internal representation. For instance,
building an internal representation of the reactions requires knowledge about
the reacting species. Therefore, the species must be internalised before the re-
actions. Units may be needed in almost any part of the model. Thus, units
have to be parsed at the very beginning. A flow chart of the model building is
shown in Fig. 2.2.

For every compartment

Distribute molecules

Model building done

Build local reaction table

Read model definition

Build local parameter table

Build global unit table

Build global parameter table

Build global compartment table

Build global species table

For every compartment

Build system geometry

Figure 2.2: A flow chart of the building of the internal representation from an
SBML model. The flow chart is implemented in the fromSBML() function. The
shaded background indicates that the system geometry, as described in chapter
3, is built together with the compartments.

2.2.2 Annotations

The extensions to SBML, required for simulation in MesoRD, are supplied in
SBML annotations. Any SBML element can carry an annotation, but MesoRD
will ignore any annotations it cannot handle. Annotations are defined in XML,
using a namespace different from the one used for the standard SBML elements.
Annotations in MesoRD are parsed and accessed using the Annotation class.

The Annotation class provides functions for accessing and comparing tag
names, child nodes and attribute name–value pairs of XML nodes. The class
relies on the SAX API of the either the Expat [35] or the Xerces-C++ library
[36] for the actual parsing. The Annotation class also implements a set of
exceptions to deal with possible run-time errors. For example, in order to ob-
tain the single-precision floating point value of an attribute foo, one would

1Assume that one has defined a parameter as well as a species identified by foo. Further-
more assume the definition of a reaction with rate law bar · foo, where bar is a parameter. It
is then not at all apparent whether foo refers to a species or a parameter. If the model writer
has supplied units wherever possible, MesoRD could conduct a dimension analysis in order to
resolve the referred entity, since one knows that a rate law should evaluate to s−1. However,
because use of units is not compulsory in SBML, this sort of deduction is generally impossible.

22

getName()

Species

...

Reaction

getValue()

Parameter

Unit operators

fold()

Unit

event()

eventReaction()

getTime()

updateReactionRates()

updateTime()

SubVolume

create()

join()

waitForInitialisation()

Thread

getBoolAttribute()

getDoubleAttribute()

getFloatAttribute()

getStringAttribute()

Annotation

fromSBML()

getIndex()

getIndexById()

SpeciesTable

sortTwoSubvolumes()

sortOneSubvolume()

simulate()

fromSBML()

System

fromSBML()

getAmount()

getAmountById()

CompartmentTable

Array of species

std::valarray〈unsigned int〉

...

std::vector〈SubVolume〉
eventDiffusion()

updateDiffusionRates()

CubicSubVolume

...

Visual

...

TRandomMersenne

randomClosed()

randomOpen()

Random

fromSBML()

UnitTable

fromSBML()

ParameterTable

fromSBML()

getRates()

getRatesArray()

getSpeciesChangeVector()

ReactionTable

decreaseSpecies()

increaseSpecies()

Compartment

getAmount()

getId()

getIndex()

Figure 2.3: Class layout for MesoRD, including some auxiliary classes like
Annotation and Thread. In addition to the classes shown and discussed here,
the code contains several others that assist or complement the ones depicted
above. For instance, the figure shows no classes for exception handling, and the
CSG and (G)UI modules are omitted entirely. For some classes, a few key func-
tions are indicated; the real classes have many more. The figure loosely adheres
to the object modelling technique, OMT, as adapted by Gamma et al. [38]:
arrows show aggregation, connecting triangles symbolise inheritance. When the
name of a class is set in italics, it indicates that the class is abstract.

call getFloatAttribute("foo"). In case the value cannot be converted to a
float, an InvalidFormat exception will be thrown. The functions for obtaining
double-precision floating point, string and Boolean values are similar.

2.3 Class Overview

MesoRD is an object oriented program, written in C++. Good C++ program-
ming practise states that major concepts should correspond to classes, and that
related concepts should share a common interface [37]. An overview of the rela-
tionship among the classes involved in the internal representation of the model
is given in Fig. 2.3. More detailed information about the MesoRD class layout is
given in the source-level documentation [34].

Building an internal representation of a model amounts to establishing and
keeping track of, possibly nested, identifiers, or symbols, and their associated
values. Just like an ordinary compiler that faces the same task, MesoRD imple-

23

ments symbol tables to map identifiers to values. Comparing Figs. 2.1 and 2.3,
one may notice that each supported listOfX construct in SBML corresponds
to a XTable class in the MesoRD implementation. These classes implement the
symbol tables for symbols of type X.

The purpose of the XTable classes is to allow access to definitions by some
identifier, which has to be unique in the current scope and namespace. For
most elements, the SBML id field acts as identifier. The notable exception is
the species, which are identified by their SBML name field. The reason for this
is further discussed in section 2.3.4.

2.3.1 The System and SubVolume Classes

The central classes that implement the simulation algorithm are System and
SubVolume. The System class contains symbol tables for the compartments,
parameters and units used in the model. It also maintains the heap of all the
subvolumes that comprise the system’s geometry. The functions that populate
the tables and build the geometry, given an SBML file, are invoked by calling
fromSBML(). Once the internal representation of the model is built, the heap
is initialised by computing the time until the next event in every subvolume.
This is accomplished through the updateTime() function. Finally, the system
is simulated using the simulate() function. The simulate() function in turn
needs to call various functions from the SubVolume class.

As was mentioned in section 1.2, the state of the system is defined by the
location of every single molecule. The spatial location of a molecule is given by
the coordinates of the subvolume in which it is found2. The union of the states
of all subvolumes is therefore equivalent to the state of the entire system. The
state of each subvolume, in turn, is maintained in the respective instances of
the SubVolume class. Maintaining state for a subvolume boils down to knowing
the copy number of each molecular species. In practise this is done by storing
the number of each species in a state vector, as is further discussed in section
2.3.4.

The state of a subvolume can be accessed and modified by various getter and
setter functions. Changing the state of a subvolume requires the time for the
next event to be updated. Time updates are performed in three calls: invoking
updateDiffusionRates() and updateReactionRates() will update δ and ρ as
used in Alg. 7. These computations do not require any random numbers. Once
δ and ρ again reflect the current state of the subvolume, calling updateTime()
will, using a single random number, determine the time until the next event in
the subvolume. The time for the next event is retrieved by calling getTime().

Reaction events depend on the volume, but not the the geometry, of the sub-
volumes in which they take place. Diffusion events depend on inter-subvolume
distances. Thus, if ` describes the size of the subvolume, subvolume geome-
try is a factor in determining δ = δ (`), but not ρ. MesoRD was designed to
support several kinds of subvolume geometries. Therefore, the SubVolume class
is an abstract class, providing an implementation only for change of state and
reactions. It also defines an interface for diffusion functions. CubicSubVolume,

2Unlike in Smoldyn, the exact location of a molecule within a subvolume is unknown to
MesoRD [39]. Thus, spatial pinpointing of molecules can be done to subvolume resolution only.
In fact, given the time resolution of the method, this is the most accurate pinpointing possible.

24

a class derived from SubVolume, implements the particularities relating to dif-
fusion in the special case of cubic subvolumes of a given side length, `. In
the future, MesoRD may feature other classes derived from the SubVolume class,
implementing different kinds of subvolumes.

In order to execute the next event, one should call the event() function.
This function will, using a fresh random number and the previously computed
ρ and δ, find and execute the next event. The event() function returns a
reference to the subvolume that, in addition to the subvolume in which the
event took place, has been modified. Since reactions only affect the current
subvolume, event() will return null in case of reaction events. Internally, the
event() function calls either eventDiffusion() or eventReaction() in order
to execute a diffusion or a reaction event respectively.

Any subvolume which has had its state, and therefore also its time, changed
due to the executed event may need to be reordered in the heap, so that the
heap property remains satisfied. As was mentioned in section 1.4, reestablishing
the heap property means moving a reference to the changed subvolume up or
down the tree representation of the heap. The time taken for such an operation
scales linearly with the displacement distance. In the worst case, this is the full
height of the tree, O (log (N)). It is possible to estimate the actual displacement
distance of a subvolume by investigating the difference ∆τ = τnew − τold. A
negative sign means the subvolume will move towards the root, a positive sign
will force the subvolume towards the leaves, see the resort() function outlined
in section 1.4.1. The magnitude of ∆τ may serve as an heuristic approximation
of the distance a subvolume will need to move.

The System class in MesoRD defines two functions for subvolume reorder-
ing: sortOneSubVolume() and sortTwoSubVolumes(). The reason for separate
functions for sorting one and two subvolumes is that performance can be slightly
improved in the case of two modified subvolumes: one may, prior to resorting
the individual subvolumes, exchange their locations in the heap if that would
decrease the total magnitude of ∆τ . The operation still has formal complex-
ity O (log (N)), where N is the number of subvolumes, but the coefficient has
decreased.

2.3.2 Units

Units are essential to any computation in kinetics; if the mesoscopic rate con-
stant for a reaction is 22.17, it matters a great deal if the number is to be
interpreted in s−1 or mole · s−1. SBML supports a wide range of units for this
purpose. Furthermore, SBML gives the user the possibility to define new units,
composed of any number of pre-defined units. The operations on units in MesoRD
are implemented in the Unit class. The system holds a global symbol table for
units, defined in the UnitTable class.

Internally, MesoRD only uses basic and supplementary SI units [40]. Any unit,
whether user-defined or defined by SBML, is converted to a, possibly scaled and
offset, product of SI units. Thus, one could for instance define a unit fulmeter
as J ·N−1, and subsequently specify all lengths in fulmeter.

The construction of a MesoRD unit from an SBML definition proceeds through
two steps: first the unit is reduced to a product of SI-units, then the product
is algebraically simplified, or folded. The reduction is done while the unit is
read from the SBML definition; only the parts that are concerned with parsing

25

SBML need to know about the plethora of SBML units. The folding is taken
care of by the fold() function.

The process for the fulmeter unit is illustrated in Eq. 2.1: the original unit
definition is given in Eq. 2.1a, the reduction step is shown in Eq. 2.1b and the
final folding step is done in Eq. 2.1c.

fulmeter =
J
N

= (2.1a)

=
kg ·m ·m/s2

kg ·m/s2
= (2.1b)

= m (2.1c)

Units in MesoRD can be added, subtracted, multiplied and divided. They
can also be raised to some power and tested for equality. The operations are
implemented using C++ overloading of the standard operators +, -, *, /, ^,
== and !=. Conversion factors may be necessary in order to perform an actual
operation with values of different units. For example:

1 item + 1 mole = 1 item + NA item = (1 + NA) item,

where NA is Avogadro’s number.

• If two units are compatible, they can be added or subtracted. For in-
stance, m and ◦C are not compatible, and attempting to add those units
would throw an exception. Adding m and km, or ◦C and K is permitted.
Performing the latter addition will also involve conversion factors.

• Multiplying and dividing two units is always permitted. For instance,
dividing m by ◦C will result in the unit m · ◦C−1. Similarly, raising K to
the power of −2 yields K−2. Multiplying m by km results in 103 ·m2.

• There is no immediately obvious way to implement equality of units. For
instance, should m equal km? MesoRD currently implements the view that
two units are equal if and only if they can be added without applying any
scaling factors or offsets. Thus, there is a difference between compatible
units and equal units: MesoRD regards m and km as unequal, even though
they can be added, and therefore are compatible.

The Trouble with Offset Units

Offset units are problematic3. They are also fairly uncommon. One of the few
sensible examples involves the conversion between ◦C and K: TC = TK − 273.15

TK = TC + 273.15
where TC has unit ◦C and TK has unit K.

3This issue has been the subject of discussion in the SBML community. Future versions
of SBML, perhaps even level 2 of version 2, currently in preparation, may remove offset units
altogether.

26

Consider for example a quantity given in ◦C · m. If one wanted to add
something given in ◦C ·m to something else given in K ·m, one would need to
do a conversion. In most cases, this is not only tricky, but impossible.

Assume the first quantity was obtained by multiplying a ◦C with b m. The
numbers a and b are unknown, only their product ab, with unit ◦C · m, is
known. The value in Km is (a + 273.15) · b = ab + 273.15 · b. This value cannot
be computed unless both a and b are known. Thus, the conversion is impossible.

MesoRD tries to solve as much of the problem as possible:

• If two units, each of which is composed of a single, basic or supplementary
SI unit, are, or can be made, equal up to an offset, they are compatible.
For instance, it is always possible to inter-convert ◦C and K.

• If two units, each composed of arbitrarily many basic or supplementary
SI units, are, or can be made, equal up to any number of offset factors, all
of which have negative exponents, the offsets are ignored. For instance,
m · ◦C−1 is equivalent to m ·K−1.

2.3.3 Parameters

A parameter in SBML associates a quantity with a symbolic name. The symbols
may be used in mathematical formulae which in turn can define kinetic laws that
control reactions. Note in particular that reactions can have local parameters,
complementing or shadowing any globally defined parameters. Thus, parameter
tables are nested, and the root parameter table contains only those parameters
defined global to the system.

Suppose MesoRD is about to evaluate the rate of a particular reaction involv-
ing parameters. In order to complete the evaluation, the evaluator must retrieve
the value associated with the parameter’s identifier. First, the reaction’s local
parameter table is queried. If the requested symbol is not found, the evalu-
ator will recursively query the parent tables until the root parameter table is
reached. As soon as the symbol is found, its value is returned, and evaluation
can proceed. If the query fails even for the root parameter table, there must
be an error in the model, because it references an undefined, or out-of-scope
parameter.

2.3.4 Species

SBML defines species as substances or entities that take part in one or more
reactions. Initial species composition can be specified in terms of concentrations
or absolute numbers of molecules. Internally, MesoRD works with absolute copy
numbers, so the initial species composition is transformed to a set of integer
numbers of molecules, no matter how it was specified in the model. If the initial
amount of a species was specified using a concentration, MesoRD will use the
appropriate compartment volume to convert and round the concentration into
a non-negative integer species count.

In MesoRD, molecules of a particular species are free to diffuse between neigh-
bouring subvolumes. This movement is controlled by diffusion rate constants,
defined in annotations of the species definitions. Diffusion between subvolumes
of different compartments causes complications, because the diffusive environ-
ment may vary with the compartment. In MesoRD, every species definition must

27

have a diffusion constant for movement to any other reachable compartment.
Thus, if there are C compartments, each of which contains S species, the model
will need to define C2S diffusion constants. Any undefined diffusion constants
are assumed to be zero, meaning the probability of a diffusion event of the
species between the compartments under consideration is zero.

Since a diffusion constant is not only tied to a particular species, but also to
a particular combination of source and target compartments, the rate of diffu-
sion from one compartment to another need not equal the rate in the opposite
direction. This can be exploited to, for instance, construct crude models of
facilitated transport.

Species Storage

All instances that need to keep track of species do so in vectors, or linear arrays.
Every instance of the SpeciesTable class holds one such vector, as does every
instance of the SubVolume class. In the case of subvolumes, the vector is equiv-
alent to the state vector from chapter 1. The vectors are indexed by integer
numbers, not species identifiers or species names. Thus, it is impossible to ask
a subvolume for the amount of a species identified by a textual identifier. It is,
however, possible to ask for the number in the i:th element of the vector. The
mapping between species identifiers and indices is handled by the SpeciesTable
class; the relevant functions are getIndex() and getIndexById().

Referring to species by integer indices rather than character strings of arbi-
trary length, makes look-up operations cheap. Furthermore, memory consump-
tion is reduced because the vectors need not store any information that would
aid in index mapping4. In the case of subvolumes, the state vector comprises
the only memory dedicated to species management. Because the number of sub-
volumes in realistically sized systems can be large, it is important to minimise
the memory required to keep the state of each subvolume.

Multi-compartment Species

SBML definitions of species are tied to compartments; species that occur in
several compartments must be defined several times5. Each definition must
have a unique id. This means that there could be several definitions, and thus
several identifiers, that refer to the same species.

Multi-compartment species in MesoRD are united by name. Assume that a
system has two compartments, C1 and C2, and one species, named A. One would
need to define A twice, once for each compartment. Each definition, however,
must have a unique id. Let the definition of A in C1 be A1 and similarly
A2 in C2. Thus, if one wanted to know how many A molecules are currently
contained in compartment C1, one would call getAmountByName("A") from the
SpeciesTable instance of compartment C1. This would yield the same result
as calling getAmountById("A1") from C1. Calling getAmountById("A2") in
compartment C1 would yield an error.

4Model writers have the opportunity to waste arbitrary amounts of memory by defining
species that are never used. Each redundant species wastes O (Nc) of storage, where Nc is
the number of subvolumes in the compartment where the species is defined.

5Apparently, this is awkward not only for MesoRD. Future revisions of SBML may enable
more elegant approaches for dealing with multi-compartment species.

28

2.3.5 Reactions

An SBML reaction is a statement describing some transformation, transport
or binding process that can change the amount of one or more species in a
subvolume. While the transport aspect of reactions would allow diffusion to be
treated as an SBML reaction, MesoRD uses reactions only to represent the kind
of chemical events which transform reactants into products. Reactions have
associated kinetic rate expressions describing how quickly they take place. Rate
expressions and their evaluation is the topic of chapter 4.

Since reactants and products are species, which by their identifier are tied to
a unique compartment, reactions are, by implication, also tied to the same com-
partment. Defining reactions that mix species from different compartments is
an error. Reactions in MesoRD are unidirectional ; in order to simulate reversible
reactions, the model writer has to define two reactions, one in each direction.

As was mentioned in section 2.3.4, MesoRD internally references species by
integer indices. The way a reaction changes the composition in the subvolume
where it takes place is described by a change vector, x′. For each species index,
the corresponding element of the change vector gives the change that occurs to
the species population when the particular reaction is executed. To illustrate
this, consider a simple 5-species system. A reaction in which one molecule of
species 2 reacts with one molecule of species 4 to produce two molecules of
species 1,

S2 + S4−−→2S1,

has the change vector

x′ =
[

0 2 −1 0 −1
]T

.

Note again that the index of the first element in the vector is 0, not 1. The
change vector of a reaction is accessed by calling getSpeciesChangeVector()
in the ReactionTable class.

In order to evaluate the rates of any or all reactions in a particular subvol-
ume, the ReactionTable class provides the getRates() and getRatesArray()
functions. Because reaction rates generally depend on the subvolume’s current
species composition, both functions take a state vector as an argument.

Reaction Rate Hashing

Reaction rate evaluation can be expensive. It is also a frequent operation –
rate evaluation has to be performed every time the composition of a subvolume
changes. Furthermore, it is assumed that a typical simulation will evaluate
reaction rates for the same configuration of species many times. In order to
reduce the cost of frequent, but identical, evaluations, MesoRD’s compartments
use hash tables to store previously computed rates.

When a reaction is about to be evaluated, MesoRD computes a hash value
based on the configuration, using a hash function, h (x), as defined in Eq. 2.2.
The argument of the hash function is the current S-dimensional species config-
uration vector, x.

h (x) =

(S−1∑
i=0

2ixi

)
mod hs, (2.2)

29

where the size of the hash table is denoted by hs.
If the hash table has an entry at j = h (x), it consists of a configuration

vector, xhashj , and a rate for each reaction, stored in a vector rhashj . The
configuration x is compared to the configuration of the stored entry, xhashj . If
the configurations match, the rates will be those stored in rhashj

. The rates
need not be evaluated anew.

Alarmingly little thought went into the construction of the hash function;
improvements may be implemented in future versions. Furthermore, no profiling
analysis of MesoRD has been undertaken. If reaction rate hashing yields any
performance improvement at all remains to be determined.

2.3.6 Compartments

In SBML, a compartment is a container of finite size for substances. Com-
partments do not necessarily have to correspond to actual structures inside or
outside a cell. The most important extension to compartments in MesoRD, is
that every compartment needs a three-dimensional geometry, see chapter 3. Op-
erations on compartments in MesoRD are implemented in the Compartment class;
the symbol table for compartments is defined in the CompartmentTable class.

The system contains one CompartmentTable, which holds references to all
compartments in the system. Every compartment can be queried in order to find
its volume and the diffusion constants for any diffusion event originating in the
compartment. A compartment holds a ReactionTable and a SpeciesTable,
where the former enumerates the reactions that can act on the species contained
in the latter. The Compartment class also defines functions to uniformly dis-
tribute species to all subvolumes of the compartment. These functions are only
used during initialisation.

At all times, the compartment’s SpeciesTable holds the total amount of
every species found in the compartment. This enables semi-global statistics to be
kept efficiently at the expense of having to mirror each change in a subvolume’s
composition in its compartment’s species table as well. For instance, assume
that compartment Ck defines a reaction Rµ,

Si−−→Sj .

On executing this reaction, the amount of Si should decrease by one, and the
amount of Sj should increase by one in the subvolume where the reaction oc-
curred. In order to keep the compartment’s statistics current, the amounts in
the compartment’s species table must be updated as well. Statistics are output
using various check-pointing functions defined in the CompartmentTable class.

2.4 Loose Ends

2.4.1 Random Numbers

As was seen in chapter 1, any stochastic simulation relies on a pseudo-random
number generator, PRNG. Random numbers can be drawn from a uniform
distribution using the rand() function from the standard C library. Its limited
randomness, however, could lead to troublesome computational inaccuracy [4].

30

Some operating systems also include a random() function, with a signifi-
cantly larger period than the historic rand() call. MesoRD’s Random class uses
random() to supply the simulation algorithm with random numbers. A random
number in the closed interval [0, 1] can be obtained by the randomClosed()
function. Similarly, a random number in the open interval (0, 1) is given by
invoking the randomOpen() function.

The quality of the native PRNG varies considerably with the particular
operating system involved. The strain MesoRD puts on the PRNG far exceeds
the capabilities of certain systems. For this reason, MesoRD comes with its own
PRNG. The TRandomMersenne class, a class derived from Random, implements
the Mersenne Twister [41]. The Mersenne Twister is a modern, reasonably fast,
623-dimensionally, equidistributed, uniform PRNG, with a period of 219937− 1.

2.4.2 Viewer

MesoRD includes a simple real-time viewer. The viewer accesses the system class’
list of subvolumes, including any molecules contained therein, and renders them
in 3D. The viewer is not crucial for simulation; it is possible to build and run
MesoRD on Unix-like systems which completely lack the X Window System.

The viewer is implemented in the Visual class. The next to trivial rendering
implementation relies on OpenGL [42, 43]. The bulk of the code in the viewer
is concerned with the particularities of different windowing systems. Because
MesoRD needs more control over the viewer than is offered by toolkits such as
GLUT, MesoRD rolls its own window management.

Currently, the MesoRD viewer is supported on the X Window System and
Microsoft Windows. The X Window System implementation relies on GLX for
low-level window management and the associated event processing [44]. On
Microsoft Windows, the native API is used. Note that recent versions of Mac
OS X are shipped with XFree86, a free X Window System implementation.

2.5 Threading and User Interaction

Once MesoRD has built an internal representation of the model, simulation starts.
Optionally, MesoRD will launch the viewer and a progress bar. The viewer was
discussed briefly in section 2.4.2. The progress bar, besides displaying the
progress of the simulation, periodically samples input from the user, and al-
lows for graceful termination of the simulation, without risking corruption of
the produced data.

MesoRD must thus manage three tasks simultaneously. While simulation
performance is of prime concern, the viewer would not be real-time if it did not
to receive a fair share of CPU attention. The progress bar is, in comparison,
computationally undemanding. In order to allow for efficient switching between
these three tasks, MesoRD allocates each to its own thread. The life and death
of these threads is illustrated in Fig. 2.4.

MesoRD uses preemtible POSIX threads on systems that support them [45].
On Microsoft Windows, MesoRD uses the native threads API. Threads-related
issues are dealt with in the Thread class.

31

Simulator initialisation

condition

idle

ProgressBar initialised

condition

ProgressBar initialisation

Join ProgressBar

join thread

Program termination

join thread

thread joined

thread joined

Simulator running

ProgressBar running

create thread

create thread

terminate

alive?

idle

idle

main()

Model building

Viewer running

Viewer initialisation

Viewer initialised

Join Viewer

Figure 2.4: Threading in MesoRD. Once the internal representation of the model
is built, the main program will create a thread for the viewer, unless, of course,
the viewer has been disabled. The main program will not continue until the
graphics are successfully initialised. Initialisation completion is signalled by
setting a condition variable. Similarly, a thread for the progress bar is spawned.
Once these threads are running, simulation begins. During simulation, the sim-
ulator polls the progress bar at suitable times to determine whether simulation
should continue or not. Should the progress bar inform the simulator that the
user wishes to end simulation, the simulator will terminate gracefully. The main
program will then join the threads for the progress bar and the viewer.

32

Chapter 3

System Geometry

Volumetric system geometry is essential to the way MesoRD works: simulating
diffusion in three dimensions would be difficult without some space to diffuse
in. As was mentioned in section 2.3.6, each compartment in MesoRD must have
its own geometry definition. The geometry of the entire system is the union
of all compartment geometries. The volume of the system geometry must be
discretized in terms of subvolumes before it is ready for simulation use. Current
versions of SBML have no means to define such geometries [33]. However, the
issue is being worked on, and in a not too distant future there may be standard
ways to deal with geometries. In the meantime, this entire chapter describes a
MesoRD-specific extension to SBML.

Irrespective of how system geometry is defined, the next subvolume method
requires the total volume, V , to be divided into N subvolumes, each with vol-
ume Ω. Since subvolumes are inherently three-dimensional, a geometry defi-
nition language for MesoRD is not required to handle anything but volumes1.
The software must be able to keep track of the spatial relationship among the
subvolumes: every subvolume must “know” about its neighbouring subvolumes,
as the latter are potential targets of diffusion events. Connectivity is discussed
in section 3.3.

3.1 Constructive Solid Geometry

Neither users nor developers of MesoRD are expected to be highly skilled mathe-
maticians. Therefore, MesoRD’s geometry language should be easy to speak, yet
powerful enough to enable construction of non-trivial geometries. A very intu-
itive way to describe geometry comes from computer aided design and is also
used in many three-dimensional modelling packages. It is called constructive
solid geometry, or CSG for short.

CSG gives a high-level description of geometry. It is intuitive because its
syntax resembles the way humans may describe objects in space. Reverting

1In MesoRD it is actually impossible to simulate systems with spatial dimensionality differ-
ent from three. However, surfaces may be modelled by ensuring the thickness of the geometry
is much smaller than its area. Similarly, curves will need to be very thin in directions orthog-
onal to the tangent. Because any physical object in The Real WorldTM extends in all three
dimensions, MesoRD’s idea of a curve or a surface may arguably be more realistic than a true
one- or two-dimensional object.

33

Figure 3.1: A simple two-dimensional object. This could be described as “a
circle with four rectangles sticking out its sides” or “two rectangles crossed on
top of a circle”.

for a moment to two dimensions, the object in Fig. 3.1 could, sacrificing any
mathematical accuracy, be described as “a circle with four rectangles sticking
out its sides” or “two rectangles crossed on top of a circle”. Having a computer
come up with such a description is surprisingly hard, mainly because humans,
unlike computers, can “see” the circle in spite of the fact that its characteristic
circumference is interrupted by rectangles. As it turns out, having the same
computer generate a geometry from such a description is relatively simple.

Theoretically, CSG is a functional procedure that defines a combined, solid,
volumetric object from a number of primitive solid volumes by the application
of bounded, Boolean set operations [46, 47]. The set of primitive volumes varies
with the particular CSG implementation, while the set of operations is quite
similar across the board. MesoRD’s set of primitives, the parameters needed to
define them as well as transformations applicable to them, are inspired by the
Virtual Reality Modelling Language, VRML [48]. Note that standard VRML
does not actually support CSG – its geometric primitives cannot be combined
using set operations. Also, VRML is not an extended markup language. There
are efforts underway to address both these issues.

In the spirit of the rest of this document, the current chapter does not
go into great mathematical detail. The purpose of the present material is to
describe the automatic conversion from a geometry description to a subvolume
discretization. Most of the necessary theory was assembled by Requicha and
Tilove in [49].

3.1.1 Tree Representation of CSG

In chapter 4, mathematical expressions consisting of operators and operands
will be represented by trees. A CSG procedure can similarly be represented
by a tree structure. The root of the tree defines the object of interest, and
the leaf nodes are geometric primitives. In between the root and the leaves
lie operator nodes. The root object is determined by combining the leaves
according to the operator nodes. In a CSG procedure, the operators are either
transformations or set operations. A simple, two-dimensional, CSG procedure
without transformations is illustrated in Fig. 3.2.

In general, the Boolean-valued set operations used to combine the primitives

34

Union

Difference

Intersection

Figure 3.2: Set operations and geometric primitives in a simple two-dimensional
CSG procedure. This particular specimen is one of the few trees in computer-
land that has its root pointing towards the bottom of the page. The blue box is
combined with the yellow circle in a union operation, resulting in the upper green
object. The red triangle is subtracted from the green object using the difference
operator. The last operation, intersection, is illustrated at the bottom part of
the figure. For clarity, all transformation operators have been omitted. Note
also that this is a binary tree. In general, CSG trees need not be binary: union
and intersection nodes can have any number of children.

35

are not commutative. Therefore, the edges of the tree need to be ordered. It
is not difficult to see that exchanging the operands of a difference operation
will yield different results, just as a − b 6= b − a. The ordering of operands is
relevant from a computational aspect as well: if a point in space is contained
by the first operand of a union, the algorithm need not spend time checking for
containment in the remaining operands.

Other properties of the tree representation of a CSG procedure are:

• The leaf nodes always define a geometric primitive. The inverse is also
true: every geometric primitive is represented by a leaf node. By defini-
tion, leaf nodes do not have any children.

• Transformation nodes only have one single child.

• Difference nodes have exactly two children, such that the sought object
is defined by the volume of the left node minus the volume of the right
node. Intersection and union nodes can have any number of children.

• A CSG tree does not provide a unique representation. As was exemplified
in the figure caption, there are at least two ways to describe the object
in Fig. 3.1. Most objects could be described by several different CSG
procedures.

In the world of MesoRD, every volume element of the full geometry must
belong to exactly one compartment. Because every compartment must define
its own CSG tree, it is possible to specify systems with overlapping CSG trees,
so that some volume element is “owned” by several compartments. This is not
an error per se, but merely a bad thing to do, as it will cause confusion when
it comes to assigning the volume element to a compartment. The scenario is
easily avoided using the difference set operation as described in section 3.2.4.
The responsibility of avoiding these situations lies entirely on the side of the
user.

MesoRD’s geometries are defined by a hierarchical, textual, XML represen-
tation of the desired CSG procedure. The XML representation is merely a
transcription of the CSG procedure in its tree form. Each element in the XML
hierarchy is identified as either a set operation node, a transformation node or
a primitive geometry node. The parameters needed to completely define each
node, such as the side lengths in case of a box, or the displacements in case of a
translation transformation, are supplied as attributes. The XML is kept as an
annotation of the compartment, the geometry of which the corresponding CSG
procedure defines. Further practical details about geometry definition may be
found in the User’s Guide [34].

3.2 CSG Trees in MesoRD

3.2.1 Geometric Primitives and Containment Testing

Primitives in MesoRD can be boxes, cones, cylinders, meshes and spheres. Just
like objects in VRML, primitives are defined centred on the origin of a local,
right-handed coordinate system. In the case of cones and cylinders, the axis
of symmetry is defined to lie parallel to the local y-axis. The local coordinate

36

systems are related to the global coordinate system, the right-handed coordinate
system of the full geometry, by a set of affine transformations.

The most important operation on primitives is containment testing: given a
point p = [xp, yp, zp]

T in the local coordinate system, MesoRD needs to figure
out whether p is contained in the primitive or not. The naive algorithms work
well for all primitives except for the mesh.

The Triangular Mesh

There is no CSG “standard”. Meshes are “non-standard” only in the sense that
many CSG implementations do not support them. In MesoRD, containment
testing for meshes is non-standard, too.

For triangular meshes, three two-dimensional arrays for the xy-, xz- and
yz-planes respectively are generated. Each array element holds a set of ranges.
These ranges indicate the regions of a ray, originating at the coordinates corre-
sponding to the point in the array and perpendicular to the plane represented
by the array, that lie inside the mesh. Ranges are determined by checking the
intersection of the ray with the set of triangles that comprise the mesh. A ray
that hits the front of a triangle marks the start of a range. When the same
ray hits the back of a triangle the range is ended. For instance, the xy-array at
(xp, yp) contains a range set {[zfi

, zbi
]}n−1

i=0 of cardinality n. If zp ∈ [zfi , zbi]
for any 0 ≤ i ≤ n− 1, p is contained in the mesh.

One may think that keeping one array would be sufficient. It probably
would, if it was not for numerical inaccuracies. When a ray strikes a triangle
tangent to the triangle plane, it is not easy to tell whether it has hit the front
or the back of the plane. Therefore, range determination in all directions is
done conservatively, ignoring any ranges arising from intersection angles close
to π/2 with the triangle normal. If p is in the range for any of the xy-, xz- or
yz-arrays, it is contained in the mesh.

The mesh is probably the most powerful primitive available in MesoRD’s CSG
implementation, as it allows for the creation of natural shapes. However, since
an object is composed of many triangles, which in turn are defined by three
vertices, very many XML elements are required to describe even simple shapes.
From a design perspective this is permissible, as SBML was never intended to
be hand-written.

3.2.2 Set Operations

The set of transformed primitives, or objects, are combined using difference, in-
tersection and union set operations. These operations take two or more operand
objects and combine them into a new object. The unary complement opera-
tion, which in combination with the intersection operation would obsolete the
difference operation, is not supported, since MesoRD does not define a universe.

Objects resulting from a set operation can act as operand objects in other set
operations. The necessary proofs, albeit under the assumption of a well-defined
universe2 have been collected by Requicha and Tilove [49].

2For the purpose of Requicha and Tilove’s theory, one may define the universe in MesoRD

CSG as the bounding box of the geometry, see section 3.5.

37

3.2.3 Transformations

Clearly the shape of a compound object depends on the exact location and
orientation of the individual primitives. Therefore, CSG trees in MesoRD contain
transformation nodes in addition to the set operation nodes. Transformations
allow subtrees to be rotated, scaled, sheared and translated. These are all affine
transformations, preserving the parallelism of lines, but not lengths or angles.
Every primitive stores its own transformation matrix which relates its local
coordinate system to the global coordinate system. For example, a cylinder
parallel to the x-axis is defined by rotating a cylinder node by π/2 around
the z-axis. In case no transformation is specified, the unit transformation is
assumed. Transformations have no effect on set operations, but are propagated
to its children.

A transformation node will affect all leaf nodes below it in the tree. The
transformation that will take a primitive leaf node from its local coordinate
system to the global coordinate system is defined by the composition of all
transformations on the path between the root and the respective leaf. The com-
pound transformation is calculated as the matrix product of the corresponding
transformation matrices.

An example which describes the union of a cone and a box is illustrated in
Fig. 3.3. The root of the tree is a scale node, which defines a scale matrix S. The
path from the root to the cone primitive only passes through one transformation
node, namely the root. Thus, the transformation matrix relating the local
coordinate system, in which the cone is defined, to the global coordinate system
of the entire procedure, is Tc = S.

Scale

S

Union

Translation

D

Box

Tb = SD

Cone

Tc = S

(a) The original CSG tree.

Union

Box

Tb = SD

Cone

Tc = S

(b) The pruned CSG tree.

Figure 3.3: A sample CSG tree as it would have been represented in the MesoRD
implementation. The tree describes the union of a cone and a box. The box is
translated with respect to the cone. The union of both primitives is scaled. A
pruned version of the tree in Fig. 3.3(a) is shown in Fig. 3.3(b).

38

The box node is separated from the union node by a translation node which
defines a displacement matrix D. The path from the box primitive to the
root passes through two transformation nodes. The transformation matrix that
relates the local coordinate system of the box to the global coordinate system
is Tb = SD.

Once the compound transformation Ti has been computed and stored for
every leaf i, the transformation nodes can be pruned without loss of information.
In MesoRD pruning is done while the internal representation is built from the
XML definition – at no point does the internal MesoRD CSG tree contain any
transformation nodes.

Homogeneous Coordinates

Throughout the CSG procedure, MesoRD internally represents points in space by
four-dimensional homogeneous coordinates [43, 47]. A vector in the usual, three-
dimensional, Cartesian space is converted into a homogeneous, four-dimensional
ditto by appending an element with value w = 1. The reverse operation, ho-
mogenisation, is illustrated in Eq. 3.1.

x
y
z
w

 7→

x
w
y
w
z
w

 (3.1)

In other words, one defines the usual, three-dimensional subspace by the hyper-
plane w = 1 through homogeneous space. From the transformation in Eq. 3.1,
one can see that two points in homogeneous coordinates map to the same point
in Cartesian space if one is a non-zero multiple of the other.

A 4×4 homogeneous transformation matrix is constructed similar to the four-
dimensional homogeneous vectors. The desired result is obtained by starting
from a four-dimensional identity matrix and replacing the top, leftmost 3 × 3
sub-matrix by the usual three-dimensional transformation matrix. The reverse
operation is analogous, although, as will be seen, not always possible.

Using homogeneous coordinates, compound transformations involving trans-
lations are multiplicative instead of additive. For instance,

D =

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

 ,

defines a translation by dx, dy and dz in the x-, y- and z-directions respectively.
Since the top elements of the fourth column are non-zero, it is not possible
to homogenise D to the usual, three-dimensional representation. In fact, it is
impossible to express translation as a 3×3 multiplicative transformation matrix.
This is the reason why MesoRD uses four-dimensional homogeneous, instead of
three-dimensional Cartesian, coordinates.

3.2.4 The compartment Primitive

MesoRD supports one more primitive that was not mentioned in section 3.2.1.
The compartment primitive is a special pseudo-primitive that allows the ge-

39

ometry of a previously defined compartment to be treated just like any other
geometric primitive.

With the compartment primitive it is possible to make use of a previously
defined compartment in the definition of another. While this “copy operation”
allows for new creative ways in the definition of geometries, the main reason for
its inception is to allow one compartment to surround another. As was men-
tioned in section 3.1.1, it is not a good idea to define geometries so that a point
in space could belong to several compartments. Using the compartment prim-
itive together with the difference set operation, the containing compartment
may be defined as the left operand of a difference operation. The right operand
is set to the geometry of the contained compartment. This will create a hole in
the containing compartment, just big enough to fit the contained compartment.

3.3 Connectivity

In order to establish connectivity among subvolumes, MesoRD will need to find
which subvolumes are related by a neighbour-relationship. In particular, given
a subvolume Ωp, centred at p, and a directional vector d, MesoRD must be able
to find a reference to Ωp’s neighbour in direction d. If d is scaled such that
its length is equal to the size of a subvolume, `, the neighbour in direction d,
Ωpd

, will be centred at pd = p + d. In case no subvolume exists at pd, Ωp is
a boundary subvolume in direction d. The algorithm outlined here would be
sufficient, were it not for periodic boundary conditions.

3.3.1 Periodic Boundary Conditions

Unlike many other CSG implementations, MesoRD supports periodic boundary
conditions, PBC:s, for boxes and cylinders. For a box, PBC:s mean that a pair
of opposing sides are topologically equivalent: if a molecule diffuses out one side,
it will reappear at the other. For a cylinder3, periodic boundary conditions, or
toroidal boundaries, mean that molecules leaving through one circular cap will
reappear at the other. Periodic boundary conditions have an important history
in the sort of simulations MesoRD deals with, since they allow for the creation
of “infinite” geometries [12].

With periodic boundary conditions, the algorithm first determines whether
Ωp lies on the boundary of the geometric primitive that includes it. Being a
boundary subvolume of the including primitive does not mean it is a boundary
subvolume of the total geometry: if the geometry in Fig. 3.1 is defined by the
union of two crossed boxes and a sphere, the boxes have virtual boundaries inside
the sphere. These boundaries are not true boundaries of the total geometry,
since they are contained within the sphere.

Periodic boundary conditions on virtual boundaries are pathological cases:
it makes little sense to define an object with PBC, only to subsequently hide the
periodic boundaries within a bigger volume. Such situations should generally
be avoided; periodic boundaries should also be true boundaries.

3Periodic boundary conditions are the reason why MesoRD uses separate primitives for cones
and cylinders. Cones could more generally be described by their height, h, the radius of the
bottom cap, rb, and the radius of the top cap, rt. A “proper” cone would have rt = 0, and
a cylinder would be defined by the special case rb = rt. Since PBC:s require topologically
equivalent sides to be exactly the same size, they would not be applicable to generalised cones.

40

Should the subvolume, Ωp, be a boundary of the defining primitive in di-
rection dPBC and periodic boundary conditions are active in direction dPBC ,
where dPBC · d 6= 0, MesoRD attempts to find a reference to the subvolume
at pPBC = p + d − lPBCdPBC instead. Here, lPBC is the length of the ge-
ometric primitive in direction dPBC , given in units of subvolume size, `. For
example, if d = dPBC points one subvolume to the right, d− lPBCdPBC points
lPBC−1 subvolumes to the left. Because the primitive is lPBC subvolumes wide
in direction dPBC , p+d− lPBCdPBC points to the subvolume opposite of Ωp,
providing Ωp is a right boundary subvolume.

In the MesoRD implementation the getNeighbour() function will, if possible,
retrieve a reference to the neighbour in the sought direction.

3.4 MesoRD CSG Algorithm

The CSG implementation of MesoRD proceeds in two passes. A second pass is
needed because periodic boundary conditions imply that subvolumes that are
not spatially close can nevertheless be neighbours. Thus, neighbour-resolution
under PBC may require retrieval of references to subvolumes which have not
yet been built. A pseudo-code version of the algorithm is given in Alg. 8.

First of all, the bounding box for every compartment geometry is computed.
The bounding box, or extent, of a CSG procedure is defined as the smallest
box, the sides of which are parallel to the axes of the coordinate system, that
completely contains the result of the procedure. Bounding boxes are discussed
in more detail in section 3.5. From the compartment bounding boxes, the global
bounding box, which is bounding box that contains the union of all compartment
geometries, is constructed. The space within the global bounding box is treated
as a point lattice, so that every lattice point is a potential centre of a subvolume.

• In the first pass, the lattice within the global bounding box is traversed
in a set order. By testing whether the CSG procedure for a compartment
contains the lattice point, the algorithm decides whether a subvolume,
centred at the point, should be generated or not. For each compartment,
c, a list, Lc is constructed which holds the subvolumes belonging to that
particular compartment. If a subvolume lies on a periodic boundary, it is
added to another list, B, as well.

• In the second pass, every subvolume in B is inspected. The neighbour-
relationships in all directions are updated using the procedure described
in section 3.3.1.

The non-PBC neighbour-relationships can be resolved while generating sub-
volumes in the first pass. If space is traversed in order of increasing x, y, and z,
the neighbouring subvolumes in the negative x-, y-, and z-directions are always
known. For example, when adding a new cubic subvolume at [x, y, z]T three of
its neighbours can be immediately assigned. One merely needs to query {Lc} for
the subvolumes centred at [x− 1, y, z]T, [x, y − 1, z]T and [x, y, z − 1]T. Do-
ing so, one must not forget to update these neighbouring subvolumes as well, so
that they are aware of the recently added subvolume. A newly constructed sub-
volume is always treated as a non-periodic boundary subvolume in the positive
x-, y-, and z-directions.

41

Algorithm 8: The CSG algorithm of MesoRD. The input to the algorithm
is a set of nc CSG trees, {tc}nc−1

c=0 , so that the each tree describes the CSG
procedure for exactly one compartment. The algorithm will produce a set
of lists, {Lc}nc−1

c=0 , of the subvolumes in each compartment.

begin
G ← global bounding box computed from {tc}
foreach p ∈ G do

for c← 0 to nc − 1 do
if contains(tc, p) 6= exterior point then

Ωnew ← new subvolume centred at p
Lc ← Lc

⋃
Ωnew

if contains(tc, p) = boundary point then
B ← B

⋃
Ωnew

Resolve non-PBC neighbour relationships

foreach Ω ∈ B do
Resolve PBC neighbour relationships

end

3.5 Bounding Boxes

Because the bounding boxes are the smallest boxes that completely contain the
result of the CSG procedure, they can be used as first approximations to the
final geometry. Because everything of interest must be contained inside the
global bounding box, one could imagine the global bounding box to also limit
the universe of the CSG procedure.

Because the local coordinate system is related to the global coordinate sys-
tem by a compound transformation matrix Ti, the bounding box in the local
coordinate system will transform as Ti into the global coordinate system. The
local bounding box always has sides parallel to the planes of the local coordi-
nate system, but as soon as Ti involves any rotation or shear, the transformed
bounding box will not be similarly aligned to the planes of the global coordi-
nate system. Due to this misalignment and the definition of a bounding box,
the transformed local bounding box is not a proper bounding box in the global
coordinate system. This is illustrated in Fig. 3.4.

There are reasons for minimising the size of the bounding box, apart from
satisfying the definition of a bounding box. As may have become apparent while
MesoRD’s CSG algorithm was described in section 3.4, any sloppiness in bound-
ing box computation will incur a decrease in performance due to unnecessary
traversal of empty space.

In order to construct the global bounding box of a transformed primitive,
MesoRD transforms the extreme points of the convex hull of the primitive, and
deduces the bounding box from the transformed extreme points. The box is the
simplest example: its global bounding box is the smallest box that contains the
eight transformed corners of the original box.

The quadrics are a little trickier. To find the bounding box of, for instance,
a cylinder, MesoRD transforms a parametrisation of the circular base and an-
other similar parametrisation of the circular cap. The x- and y-coordinates

42

x

y

(a) The local bounding box.

x

y

(b) The global bounding box. The
local bounding box is indicated by
the shaded rectangle. The bounding
box of the transformed local bound-
ing box is shown by the dotted rect-
angle.

Figure 3.4: The bounding box, or rather, the “bounding rectangle”, of a simple
two-dimensional object. The dashed lines describe the smallest rectangle, the
sides of which are aligned with the axes of the coordinate system, that com-
pletely contains the object. The bounding box in the local coordinate system is
shown in Fig. 3.4(a). The bounding box in the global coordinate system, which
is related to the local coordinate system by some transformation Ti, is shown
in Fig. 3.4(b). Note that the global bounding box is not the bounding box of
the transformed local bounding box, since that would no longer be the smallest
box that completely contains the object.

43

of an untransformed cylinder can be parametrised in terms of ϕ ∈ [0, 2π) to
[r · cos (ϕ) , r · sin (ϕ)]T, where r is the cylinder’s radius. Its circular base lies
at z = −h/2. Transformation by Ti yields

Ticb =

t00 t01 t02 t03
t10 t11 t12 t13
t20 t21 t22 t23
t30 t31 t32 t33

r · cos (ϕ)
r · sin (ϕ)

h/2
1

 . (3.2)

In order to find the extrema of the transformed base, the vector resulting from
Eq. 3.2 is differentiated with respect to ϕ

∂Ticb

∂ϕ
= r ·

t01 · cos (ϕ)− t00 · sin (ϕ)
t11 · cos (ϕ)− t10 · sin (ϕ)
t21 · cos (ϕ)− t20 · sin (ϕ)
t31 · cos (ϕ)− t30 · sin (ϕ)

 . (3.3)

Finding the extrema of the transformed circular base now amounts to back-
substituting boundary points of Ticb, as well as the ϕ where any component of
∂Ticb/∂ϕ is zero, into Eq. 3.2. The latter ϕ must satisfy

ϕ0 = arctan (t01/t00)
ϕ1 = arctan (t11/t10)
ϕ2 = arctan (t21/t20)
ϕ3 = arctan (t31/t30)

. (3.4)

Spheres an cones are handled similarly.
In the MesoRD implementation the getBoundingBox() function is used to

retrieve the bounding box of a CSG procedure.

3.5.1 Bounding Boxes of Set Operations

Since transformation nodes are pruned early, the CSG procedure inside MesoRD
only contains set operation and primitive nodes. Because the algorithm de-
scribed in this chapter will need to compute the bounding box for the entire
CSG procedure, a way to calculate bounding boxes for set operations is needed.

• The bounding box of a difference operation is the bounding box of the left
operand. Not even when the bounding box of the left operand completely
contains the bounding box of the right operand is it safe to assume that
the resulting bounding box is anything less than the bounding box of the
left operand. An example illustrating this is shown in Fig. 3.5.

• The bounding box of an intersection is the intersection of the bounding
boxes for all operand nodes in the operation.

• The bounding box of a union is the union of the bounding boxes for all
nodes in the operation.

44

Figure 3.5: The bounding boxes, indicated by dashed lines, in a difference op-
eration. The red object is to be subtracted from the blue object. The bounding
box of the red object completely contains the bounding box of the blue object.
However, the bounding box of the resulting object will still be the bounding box
of the blue object.

45

Chapter 4

Expression Evaluation

4.1 Reaction Rates

As was seen in chapter 1, reaction rates and reaction probabilities are, at least
from a computational viewpoint, equivalent. Consider for instance the reaction

Si + Sl

k/q
−−−−−→Sj + Sl. (4.1)

Assuming that the reaction in Eq. 4.1 is a second order reaction, catalysed by
Sl, the rate of the reaction, or its probability of occurrence per time unit, can
be written

a =
#si · #sl · k

q
,

just as was done in section 1.3.
Rates in SBML are mathematical expressions, defined in a subset of MathML

[33]. These expressions may depend on the current composition of the subvol-
ume where the reaction is taking place, present parameter values and external
functions, defined elsewhere in the model. SBML requires all rate laws to eval-
uate to s−1. In the above example, a must thus have the unit s−1, and because
#si as well as #sl are dimensionless quantities, k/q must also have the unit
s−1. The topic of dimension analysis is further discussed in section 4.3.

Let the instantaneous composition of a subvolume be defined by a state
vector x, as first encountered in section 1.3. The number of molecules of the i:th
species is given by the i:th element of x, xi. Similarly, assume that parameter
values are stored in a vector p. Let the index in p for any parameter be given
by a function pIndex(identifier). Thus, the rate of the reaction in Eq. 4.1, can
be written as a function:

a = a (x,p) =
xi · xl · ppIndex(k)

ppIndex(q)
. (4.2)

The MathML corresponding to Eq. 4.2 is shown in Fig. 4.1.
Currently, MesoRD has no support for user-defined functions. Once MesoRD

implements functions, rate expressions will depend on a vector of functions, f ,
as well.

46

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<divide/>
<apply>

<times/>
<ci>Si<ci/>
<ci>Sl<ci/>
<ci>k<ci/>

</apply>
<ci>q<ci/>

</apply>
</math>

Figure 4.1: The rate as defined by Eq. 4.2 expressed in MathML. #si is assumed
to be defined by the species identified by Si. #sl is similarly related to Sl.
Note that SBML only supports a subset of MathML.

4.2 The Abstract Syntax Tree

MathML, like SBML, is an XML. The inherently hierarchical structure of ex-
tended markup languages means that it is natural to interpret MathML as a
tree. In this context, the trees are called abstract syntax trees, or AST:s. Build-
ing the AST from the information given in MathML/SBML is easy; most of the
work is done by the XML engine in cooperation with libsbml [32, 35, 36]. For
instance, the expression from Eq. 4.2 has the AST shown in Fig. 4.2.

Division

Multiplication

Parameter

pIndex(k)

Multiplication

Species

i

Species

l

Parameter

pIndex(q)

Figure 4.2: The abstract syntax tree, or AST, corresponding to Eq. 4.2. This
is a tree representation of the information in Fig. 4.1. Nodes should only store
indices of species and parameters into their respective vectors, not the objects
themselves.

47

4.2.1 AST Evaluation

The AST is the starting point for all procedures dealing with reaction rate
evaluation. Evaluating an AST means finding the value of its root node. This
value can be found by recursive depth-first traversal, evaluating every node as
it is encountered. Evaluation thus requires O (n) operations, where n is the
number of nodes in the tree.

Reaction rate evaluation is done frequently; as soon as the composition of
a subvolume is changed, the rates for all reactions that depend on the changed
species must be recomputed. Reaction rate evaluation could easily become a
performance bottleneck, and care should be taken to make its implementation
as efficient as possible. An attempt at improving the performance of repeated,
identical, rate evaluation was discussed in section 2.3.5.

To further improve performance, MesoRD attempts to transform the tree, so
that it becomes faster to evaluate. Because performance scales linearly with the
number of nodes, a way to accomplish node reduction is examined in section 4.4.
An experimental feature in MesoRD is a transformation that will convert certain
AST:s to a linear form. The linearised AST can subsequently be evaluated
iteratively. Linearisation is discussed in section 4.5.

In order to resolve the parameter identifiers and species indices1, present in
an AST, the evaluator needs to access the symbol tables discussed in chapter 2.
Such look-ups can be expensive. Unfortunately, there is no alternative. Only
if parameters, as well as species compositions, were constant, could look-ups be
completely avoided. But then, there would also be no need for rate evaluation:
if a subvolume’s chemical composition does not change, the probabilities of the
reactions will not change either. A system in which everything is constant is
probably too boring to simulate.

4.3 Dimension Analysis

Once the AST has been constructed, it is possible, using functions from the Unit
class, to compute the unit of the expression. The unit of the expression can be
found by a depth-first traversal, recursively determining the unit of every node,
similar to how one would evaluate the AST. Only if the model defines units for
all parameters used in an expression, is it possible to assign a unit to the root
of the corresponding tree. Including units in parameter definitions is optional
in SBML. Thus, dimension analysis is not always possible.

As was mentioned in section 4.1, rate units should evaluate to s−1. This is a
little awkward for the type of simulations MesoRD deals with, because doing so
would require one to include the reaction volume in the rate expression2. The
reaction volume is identical to the volume of a subvolume, and this quantity, in
turn, is not necessarily a part of the model description.

MesoRD allows reactions to be specified in molar · s−1 = mole · l−1 · s−1.
If MesoRD finds that this is the case, it will multiply the rate expression by

1Only indices of species and parameters into their respective species and parameter vectors
should be stored in the tree. This is because up-to-date values of all involved, non-constant,
quantities must be retrieved while evaluating an AST. While the AST itself is static, the
symbol tables always hold the current values of any parameters or species.

2As was noted in section 1.3.1, the microscopic reaction rates, unlike the macroscopic
dittos, are volume-dependant.

48

the volume of a subvolume and the reciprocal of Avogadro’s number. Since the
volume of a subvolume is constant within the simulation, the resulting expression
may be factored as described in section 4.4 below. This transformation will
ensure that the rate has the unit s−1, and the user does not need to include the
volume of a subvolume in the model definition. If the rate expression already
evaluates to s−1, or if the unit cannot be determined, MesoRD will assume the
user knows what the user does, and proceed without altering the expression at
all. Thus, MesoRD has relaxed the SBML specification a little, not restricted it.

4.4 Constant Folding

Parameters in SBML can be defined to be constant, and MesoRD can make use
of this information. The value of a constant parameter can be looked up once
and for all while constructing the AST. MesoRD will then replace the Parameter
node with a Constant node, the value of which is the value of the parame-
ter. During simulation, the evaluator need not spend any time consulting the
ParameterTable.

Assume that the parameters k and q in Eq. 4.2 are constant. This means
the expression can be simplified.

a = xi · xl ·m where m =
ppIndex(k)
ppIndex(q)

is constant (4.3)

Redrawing the AST, one would see that the number of nodes in the AST has
decreased by two. Since evaluation scales linearly with the number of nodes in
the tree, this is an improvement.

Common techniques from compiler design can be used to implement improve-
ments such as described above [17]. MesoRD’s constant folding and algebraic
simplification functions will scan the tree for patterns which can be simplified.
For instance, if both children of a multiplication node are constant, the entire
subtree can be replaced by a new Constant node, the value of which is the
product of the two multiplication operands. The operation is illustrated in Fig.
4.3.

�

×
�

c1 c2

⇒ c3 = c1 · c2

Figure 4.3: Algebraic simplification of a multiplication operation with two con-
stant operands. The left and right operands are denoted c1 and c2 respectively.
The subtree on the left is replaced by a new constant node, the value of which,
c3, is the product of the two constant operands.

The process can be repeated on a full tree until no more transformations can
be applied. All transformations implemented in MesoRD are given in appendix
A.

49

4.5 Expression Linearisation

MathML is powerful, and even the subset implemented in SBML is quite expres-
sive. However, it is likely that most MesoRD simulations will be subject to rate
expressions that are reasonably simple. A typical rate expression is assumed to
have the form

a =
m∑

i=0

αi

n∏
j=0

fij

 where fij =
(

#sij + βij

)γij
, (4.4)

where, α, β and γ are constants. Once constant folding has been applied to the
AST, MesoRD will attempt to express the AST on the form of Eq. 4.4. If this
succeeds, reaction evaluation can be implemented as an iterative procedure.
Because m and n in Eq. 4.4 are typically small integers3, loop unrolling is
feasible.

3Since most chemical reactions do not involve more than two species, m ≤ 2 and n ≤ 2
is expected to hold in typical cases. More complicated reactions are believed to occur in a
sequence of steps, where each elementary step involves only one or two reacting species [7, 10].

50

Chapter 5

Conclusion

The implementation discussed in this document is licensed under the GNU
General Public License. It is available in source and binary form on the world
wide web.

http://mesord.sourceforge.net

Please use reference [50] when citing MesoRD and reference [2] when citing the
next subvolume method. The author welcomes comments and suggestions, re-
garding the implementation as well as this text.

hattne@users.sourceforge.net

MesoRD was first released in September , and a minor update was posted
in January . Deterministic simulation was introduced by David Fange in
September , with an update following in April [51]. The user base is
estimated to around 150, which, given the specificity of the problem the software
addresses, is not too bad.

The MesoRD core seems to work quite well, at least for those involved in its
development. On a modern desktop workstation one can simulate systems of
around one million subvolumes.

5.1 Related Work

There are several other efforts which are similar in spirit to MesoRD. A few of
these were summarised by Lemerle et al. in [52]. Comparison and vali-
dation of different software simulators, especially with respect to disagreement
with mean-field theory, is greatly aided by the recent emergence of public model
repositories, such as the BioModels Database [53]. Unlike many other packages,
MesoRD does not have its own extensive test suit yet.

5.2 Future Work

MesoRD is not ready for “production use”.

51

http://mesord.sourceforge.net

• The most prohibitive deficiency is perhaps its lack of error reporting:
when1 MesoRD crashes, it is very difficult to determine why, unless one
is equipped with a debugger and an understanding of C++.

• A related shortcoming is the semi-unstructured simulation output. It may
be desirable to devise a more widely supported format, better suited for
automatic parsing. Output based on XML may be possible, even though
its verbosity may cause the already voluminous output to grow even more.

• While MesoRD has been tested for basic functionality, it has not been sub-
jected to any performance evaluation. Conducting a profiling analysis may
reveal hitherto unidentified bottlenecks, and may also help in answering
questions of how efficient intended “improvements” really are.

• There are many new features that could be included in future versions of
MesoRD. Full SBML support is a prime candidate. By enabling arbitrary
growth laws, SBML functions could lead to the exciting possibility of
growing and shrinking geometries. One application of variable geometries
is simulation of cell division. Dynamic geometries are implemented in
STOCKS [54]. Similar “shape-distorting processes” were originally planned
for SmartCell [55].

• While trivial parallelism on the Monte Carlo level is a not an issue2, multi-
threaded parallelism of the simulation algorithm definitely is. Such paral-
lelism could perhaps be implemented based on the observation that events
and heap reordering need not read or write the same data.

• A parallel implementation for distributed memory architectures is more
distant. The connectivity among subvolumes means that extensive com-
munication would be required when the simulation workload is split to
several processors. This makes an efficient non-shared memory implemen-
tation difficult. The work by Korniss et al. may provide a good starting
point for working around these problems [56].

Other ideas for improvement are listed in the User’s Guide [34].

5.3 Acknowledgements

I wish to thank Johan Elf for giving me the opportunity to work on this tremen-
dously exciting project. Per Lötstedt provided additional supervision and his
careful examination of the written report was much appreciated. I thank David
Fange for nursing and significantly enhancing the code base, and extending the
MesoRD development team to a total of three. The project was funded by grants
to Måns Ehrenberg from the Swedish Research Council.

Several improvements were suggested by Martin Lovmar and Jesper Gan-
telius. I thank Paul Sjöberg for testing the first Solaris port. Dominic Tölle

1Yes, when MesoRD crashes, not if. It turns out to be difficult to write a complete model
definition without including errors. On a related note, it turned out to be difficult to write
MesoRD without including bugs. While model building should ideally be an automated proce-
dure, C++ development probably should not.

2This is what Gillespie originally intended to use his algorithm for in [4].

52

and Katherine Lawler gave helpful comments on an early draft of this text.
Malin Lindgren3 again played a key role in “quality assurance”.

MesoRD uses code from several other open-source projects. The Mersenne
Twister implementation used by MesoRD was adapted by Agner Fog. Parts of
the annotation processing are contributed by the Apache Software Foundation.
Some tricks on in/out streams are due to Dietmar Kuehl. The matrix imple-
mentation was originally written for the libsim project. In fact, this entire
project would have been a whole lot more difficult without support from the
open source community in general.

Finally, a bagful of gratitude goes to the patient users of MesoRD, both
present and future.

3Who, during the course of this project, became Malin Hattne.

53

Bibliography

[1] Johan Elf, Andreas Dončić, and Måns Ehrenberg. Mesoscopic reaction–
diffusion in intracellular signalling. Proceedings of SPIE, 5110:114–124,
2003.

[2] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical
systems into spatial domains of opposite phases. Systems Biology, 1(2):230–
236, December 2004.

[3] Frank Jensen. Introduction to Computational Chemistry. John Wiley &
Sons, first edition, 1999.

[4] Daniel T. Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. Journal of Com-
putational Physics, 22:403–434, 1976.

[5] Larry Lok and Roger Brent. Automatic generation of cellular reaction net-
works with Moleculizer 1.0. Nature Biotechnology, 23(1):131–136, January
2005.

[6] Daniel C. Mattis and M. Lawrence Glasser. The uses of quantum field the-
ory in diffusion-limited reactions. Reviews of Modern Physics, 70(3):979–
1001, July 1998.

[7] Donald A. McQuarrie. Stochastic approach to chemical kinetics. Journal
of Applied Probability, 4(3):413–478, December 1967.

[8] Johan Elf. Intracellular Flows and Fluctuations. PhD thesis, Uppsala
University, 2004.

[9] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reac-
tions. The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[10] P. W. Atkins. Physical Chemistry. Oxford University Press, sixth edition,
1998.

[11] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simula-
tion of chemical systems with many species and many channels. Journal of
Physical Chemistry A, 104(9):1876–1889, 2000.

[12] P. Hanusse and A. Blanché. A Monte Carlo method for large reaction–
diffusion systems. Journal of Chemical Physics, 74(11):6148–6153, June
1981.

54

[13] Don L. Bunker, Bruce Garret, Tadeusz Kleindienst, and George Stevenson
Long III. Discrete simulation methods in combustion kinetics. Combustion
and Flame, 23:373–379, 1974.

[14] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz. A new algorithm for Monte
Carlo simulation of Ising spin systems. Journal of Computational Physics,
17(1):10–18, January 1975.

[15] Lennart R̊ade and Bertil Westergren. Mathematics Handbook for Science
and Engineering. Studentlitteratur, third edition, 1995.

[16] Jeroen S. van Zon and Pieter Rein ten Wolde. Simulating biochemical
networks at the particle level and in time and space: Green’s function
reaction dynamics. Physical Review Letters, 94(128103):1–4, April 2005.

[17] Steven S. Muchnick. Advanced Compiler Design and Implementation. Aca-
demic Press, first edition, 1997.

[18] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. The MIT Electrical Engineering and Computer Science
Series. The MIT Press, first edition, 1990.

[19] Steven S. Andrews and Dennis Bray. Stochastic simulation of chemical re-
actions with spatial resolution and single molecule detail. Physical Biology,
1:137–151, 2004.

[20] A. B. Bortz, M. H. Kalos, J. L. Lebowitz, and M. A. Zendejas. Time evolu-
tion of a quenched binary alloy: Computer simulation of a two-dimensional
model system. Physical Review B, 10(2):535–541, July 1974.

[21] M. Malek-Mansour and J. Houard. A new approximation scheme for the
study of fluctuations in nonuniform nonequilibrium systems. Physics Let-
ters, 70A(5, 6):366–368, April 1979.

[22] Audrius B. Stundzia and Charles J. Lumsden. Stochastic simulation of
coupled reaction–diffusion processes. Journal of Computational Physics,
127:196–207, 1996.

[23] M. Ander, P. Beltrao, B. Di Ventura, J. Ferkinghoff-Borg, M. Foglierini,
A. Kaplan, C. Lemerle, I. Tomás-Oliveira, and L. Serrano. SmartCell, a
framework to simulate cellular processes that combines stochastic approxi-
mation with diffusion and localisation: analysis of simple networks. Systems
Biology, 1(1):129–138, June 2004.

[24] S. Schnell and T. E. Turner. Reaction kinetics in intracellular environments
with macromolecular crowding: simulations and rate laws. Progress in
Biophysics & Molecular Biology, 85:235–260, 2004.

[25] Otto Berg, Måns Ehrenberg, and Martin Lovmar. Biophysical Chemistry:
Thermodynamics and Kinetics. Uppsala University, October 2001.

[26] Otto G. Berg. On diffusion-controlled dissociation. Chemical Physics,
31:47–57, 1978.

55

[27] Yoshiki Kuramoto. Effects of diffusion on the fluctuations in open chemical
systems. Progress in Theoretical Physics, 52:711–713, August 1974.

[28] F. Baras and M. Malek Mansour. Microscopic simulations of chemical
instabilities. Advances in Chemical Physics, 100:393–474, 1997.

[29] Thomas Fricke and Dietmar Wendt. The Markoff-Automaton: A new algo-
rithm for simulating the time evolution of large stochastic dynamic systems.
International Journal of Modern Physics C, 0(0):1–29, 1995.

[30] Maria Andér. SmartCell – a general framework for whole-cell modeling
and simulation. Master’s thesis, Uppsala University School of Engineering,
October 2002.

[31] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano,
A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar,
S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley,
T. C. Hodgman, J.-H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger,
A. Kremling, U. Kummer, N. Le Novère, L. M. Loew, D. Lucio, P. Mendes,
E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen,
T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence,
J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The sys-
tems biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics, 19(4):524–531,
2003.

[32] Ben Bornstein. libsbml Developer’s Manual. The SBML Team, 2.3.0 edition,
May 2005.

[33] Andrew Finney and Michael Hucka. Systems biology markup language
(SBML) level 2: Structures and facilities for model definitions. Technical
report, Systems Biology Workbench Development Group, June 2003.

[34] Johan Hattne, David Fange, and Johan Elf. MesoRD User’s Guide. Up-
psala University, Department of Cell and Molecular Biology, 0.2.1 edition,
2006.

[35] Clark Cooper. Using Expat. O’Reilly XML.com Archives, pages 1–3,
September 1999.

[36] The Apache Software Foundation. Xerces-C++ Documentation. The
Apache Software Foundation, 2004.

[37] Bjarne Stroustrup. The C++ Programming Language. Addison–Wesley,
third edition, 1997.

[38] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison–Wesley
Professional Computing Series. Addison–Wesley, first edition, 1995.

[39] Karen Lipkow, Steven S. Andrews, and Dennis Bray. Simulated diffusion of
phosphorylated CheY through the cytoplasm of Escherichia coli. Journal
of Bacteriology, 187(1):45–53, January 2005.

56

[40] Carl Nordling and Jonny Österman. Physics Handbook for Science and
Engineering. Studentlitteratur, fifth edition, 1996.

[41] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Transactions on Modeling and Computer Simulation, 8(1):3–30, Jan-
uary 1998.

[42] Mark Segal and Kurt Akeley. The OpenGL R© Graphics System: A Specifi-
cation. Silicon Graphics, Inc., 1.5 edition, 2003.

[43] Edward Angel. Interactive Computer Graphics: A Top-Down Approach
with OpenGLTM. Addison–Wesley, first edition, 1997.

[44] Paula Womack and Jon Leech. OpenGL R© Graphics with the X Window
System R©. Silicon Graphics, Inc., 1.3 edition, October 1998.

[45] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads
Programming. O’Reilly & Associates, first edition, 1996.

[46] Peter Burger and Duncan Gillies. Interactive Computer Graphics: Func-
tional, Procedural and Device-Level Methods. International Computer Sci-
ence Series. Addison–Wesley Publishing Company, first edition, 1989.

[47] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics – Principles and Practice. The Systems Programming
Series. Addison–Wesley Longman, second edition, 1996.

[48] Jed Hartman and Josie Wernecke. The VRML 2.0 Handbook: Building
Moving Worlds on the Web. Addison–Wesley Publishing Company, first
edition, 1996.

[49] Aristides A. G. Requicha and Robert B. Tilove. Mathematical foundations
of constructive solid geometry: General topology of closed regular sets.
Technical report, College of Engineering & Applied Science, The University
of Rochester, March 1978.

[50] Johan Hattne, David Fange, and Johan Elf. Stochastic reaction–diffusion
simulation with MesoRD. Bioinformatics, 21(12):2923–2924, 2005.

[51] David Fange and Johan Elf. Noise-induced Min phenotypes in E. coli. PLoS
Computational Biology, 2(6):637–648, June 2006.

[52] Caroline Lemerle, Barbara Di Ventura, and Luis Serrano. Space as the
final frontier in stochastic simulations of biological systems. FEBS Letters,
579:1789–1794, 2005.

[53] Nicolas Le Novère, Benjamin Bornstein, Alexander Broicher, Mélanie
Courtot, Marco Donizelli, Harish Dharuri, Lu Li, Herbert Sauro, Maria
Schilstra, Bruce Shapiro, Jacky L. Snoep, and Michael Hucka. BioModels
Database: a free, centralized database of curated, published, quantitative
kinetic models of biochemical and cellular systems. Nucleic Acids Research,
34:D689–D691, 2006.

57

[54] Andrzej M. Kierzek. STOCKS: STOChastic Kinetic Simulations of bio-
chemical systems with Gillespie algorithm. Bioinformatics, 18(3):470–481,
2002.

[55] Anders Kaplan. On whole-cell modelling and simulation. Master’s thesis,
Uppsala University School of Engineering, October 2001.

[56] G. Korniss, M. A. Novotny, and P. A. Rikvold. Parallelization of a dynamic
Monte Carlo algorithm: a partially rejection-free conservative approach.
Technical report, Florida State University, July 2004.

58

Appendix A

Algebraic Simplification
Transformations

In the diagrams that follow, ti denotes a subtrees and ci is a constant node.
Constant nodes with known values are indicated by their value alone.

The general tendency of the transformations is to move constant nodes up-
wards and to the left. If an AST is subjected to these transformations from the
leafs and towards the root, in the order given here, the tree should eventually
be algebraically simplified. The transformations are grouped by the operation
defined in root of the subtree.

Caveats apply: this list of transformations needs to be verified. It may be
possible to reduce an expression further even after the application of the material
in this appendix. Some transformations may be redundant or even erroneous.

59

A.1 Addition Transformations

Addition transformations are shown in Fig. A.1.

�

+
�

t c

⇒�+�

c t

(a) A1.

�

+
�

c1

�

+
�

c2 t

⇒ �+�

c1 + c2 t

(b) A2.

�

+
�

c1

�

−

�

c2 t

⇒ �
−

�

c1 + c2 t

(c) A3.

�

+
�

c1

�

−

�

t c2

⇒ �
−

�

c1 − c2 t

(d) A4.

�

+
�

�

+
�

c t1

t2

⇒ �+�

c

�

+
�

t2 t1

(e) A5.

�

+
�

t1

�

+
�

c t2

⇒ �+�

c

�

+
�

t1 t2

(f) A6.

�

+
�

�

−

�

c t1

t2

⇒ �+�

c

�

−

�

t1 t2

(g) A7.

�

+
�

�

−

�

t1 c

t2

⇒ �+�

−c

�

+
�

t1 t2

(h) A8.

�

+
�

t1

�

−

�

c t2

⇒ �+�

c

�

−

�

t1 t2

(i) A9.

�

+
�

t1

�

−

�

t2 c

⇒ �+�

−c

�

+
�

t2 t1

(j) A10.

�

+
�

c1 c2

⇒ c1 + c2

(k) A11.

�

+
�

0 t

⇒ t

(l) A12.

Figure A.1: The addition transformations.

60

A.2 Division Transformations

Division transformations are shown in Fig. A.2.

�

÷
�

c1

�

÷
�

c2 t

⇒ �×�

c1/c2 t

(a) D1.

�

÷
�

c1

�

÷
�

t c2

⇒ �÷�

c1 · c2 t

(b) D2.

�

÷
�

c1

�

×
�

c2 t

⇒ �÷�

c1/c2 t

(c) D3.

�

÷
�

�

÷
�

c1 t

c2

⇒ �÷�

c1/c2 t

(d) D4.

�

÷
�

�

÷
�

t c1

c2

⇒ �÷�

t c1 · c2

(e) D5.

�

÷
�

�

×
�

c1 t

c2

⇒ �×�

c1/c2 t

(f) D6.

�

÷
�

�

÷
�

c t1

t2

⇒ �÷�

c

�

×
�

t1 t2

(g) D7.

�

÷
�

�

÷
�

t1 c

t2

⇒ �×�

1/c
�

÷
�

t1 t2

(h) D8.

�

÷
�

t1
�

÷
�

c t2

⇒ �×�

1/c
�

×
�

t1 t2

(i) D9.

�

÷
�

t1

�

÷
�

t2 c

⇒ �×�

c

�

÷
�

t1 t2

(j) D10.

�

÷
�

�

×
�

c t1

t2

⇒ �×�

c

�

÷
�

t1 t2

(k) D11.

�

÷
�

t1
�

×
�

c t2

⇒ �×�

1/c
�

÷
�

t1 t2

(l) D12.

�

÷
�

c1 c2

⇒ c1/c2

(m) D13.

�

÷
�

0 t

⇒ 0

(n) D14.

�

÷
�

t 0

⇒ Division by zero

(o) D15.

�

÷
�

t 1

⇒ t

(p) D16.

Figure A.2: The division transformations.

61

A.3 Multiplication Transformations

Multiplication transformations are shown in Fig. A.3.

�

×
�

t c

⇒�×�

c t

(a) M1.

�

×
�

c1

�

×
�

c2 t

⇒ �×�

c1 · c2 t

(b) M2.

�

×
�

c1

�

÷
�

c2 t

⇒ �÷�

c1 · c2 t

(c) M3.

�

×
�

c1

�

÷
�

t c2

⇒ �×�

c1/c2 t

(d) M4.

�

×
�

�

×
�

c t1

t2

⇒ �×�

c

�

×
�

t2 t1

(e) M5.

�

×
�

�

÷
�

c t1

t2

⇒ �×�

c

�

÷
�

t2 t1

(f) M6.

�

×
�

�

÷
�

t1 c

t2

⇒ �×�

1/c
�

×
�

t1 t2

(g) M7.

�

×
�

t1

�

×
�

c t2

⇒ �×�

c

�

÷
�

t1 t2

(h) M8.

�

×
�

t1

�

÷
�

c t2

⇒ �×�

c

�

÷
�

t1 t2

(i) M9.

�

×
�

t1
�

÷
�

t2 c

⇒ �×�

1/c
�

×
�

t2 t1

(j) M10.

�

×
�

c1 c2

⇒ c1 · c2

(k) M11.

�

×
�

0 t

⇒ 0

(l) M12.

�

×
�

1 t

⇒ t

(m) M13.

Figure A.3: The multiplication transformations.

62

A.4 Subtraction Transformations

Subtraction transformations are shown in Fig. A.4.

�

−

�

t c

⇒ �+�

−c t

(a) S1.

�

−

�

c1

�

−

�

c2 t

⇒ �+�

c1 − c2 t

(b) S2.

�

−

�

c1

�

+
�

c2 t

⇒ �
−

�

c1 − c2 t

(c) S3.

�

−

�

t1

�

−

�

c t2

⇒ �+�

−c

�

+
�

t1 t2

(d) S4.

�

−

�

t1

�

+
�

c t2

⇒ �+�

−c

�

−

�

t1 t2

(e) S5.

�

−

�

c1 c2

⇒ c1 − c2

(f) S6.

�

−
�

0 t

⇒ �×�

−1 t

(g) S7.

�

−

�

t 0

⇒ t

(h) S8.

Figure A.4: The subtraction transformations.

63

	Introduction
	Mission Statement
	The Master Equation
	Gillespie's Direct Method
	The Next Reaction Method
	Coupled Reaction--Diffusion Processes
	The Next Subvolume Method

	An Overview of MesoRD
	Running MesoRD
	The Model
	Class Overview
	Loose Ends
	Threading and User Interaction

	System Geometry
	Constructive Solid Geometry
	CSG Trees in MesoRD
	Connectivity
	MesoRD CSG Algorithm
	Bounding Boxes

	Expression Evaluation
	Reaction Rates
	The Abstract Syntax Tree
	Dimension Analysis
	Constant Folding
	Expression Linearisation

	Conclusion
	Related Work
	Future Work
	Acknowledgements

	Bibliography
	Algebraic Simplification Transformations
	Addition Transformations
	Division Transformations
	Multiplication Transformations
	Subtraction Transformations

